The Conway and Kinoshita-Terasaka Knots

ωεβ:=http://drorbn.net/ktc28

ωεβ:=http://drorbn.net/ktc25

$\texttt{GraphicsRow[PolyPlot[}{\ensuremath{\ensuremath{\Theta}}\xspace[\texttt{Knot}[\texttt{\#}]], \texttt{ImageSize} \rightarrow \texttt{Tiny}] \& /@$ {"K11n34", "K11n42"}]

Conjecture 2.

(Note that the genus of the Conway knot appears to be bigger than the genus of Kinoshita-Terasaka)

ωεβ:=http://drorbn.net/ktc25 εβ:=http://drorbn.net/ktc25 Question 1. What's the relationship between Θ and the Garoufalidis-Kashaev invariants [GK, GL]? Questions, Conjectures, Expectations, Dreams. ωεβ:=http://drorbn.net/ktc25 ωeβ:=http://drorbn.net/ktc25 **Conjecture 3.** θ is the ϵ^1 contribution to the "solvable approximation" of the sl_3 universal invariant, obtained by running the quantization machinery on the double On classical (non-virtual) knots, θ always has hexagonal (D_6) symmetry. $\mathcal{D}(\mathfrak{b}, b, \epsilon \delta)$, where \mathfrak{b} is the Borel subalgebra of sl_3 , b is the bracket of \mathfrak{b} , and δ the cobracket. See [BV2, BN1, Sch]

ωeβ:=http://drorbn.net/ktc25 ωeβ:=http://drorbn.net/ktc25 **Conjecture 4. Fact 5.** θ has a perturbed Gaussian integral formula, with integration carried out over a space 6E, consisting of 6 copies of the space of edges of a knot diagram D. See [BN2]. θ is equal to the "two-loop contribution to the Kontsevich Integral", as studied by Garoufalidis, Rozansky, Kricker, and in great detail by Ohtsuki **Conjecture 6.** For any knot K, its genus g(K) is bounded by the T_1 -degree of θ : $2g(K) \ge \deg_{T_1} \theta(K).$ [GR, Ro1, Ro2, Ro3, Kr, Oh]. **Conjecture 7.** $\theta(K)$ has another perturbed Gaussian integral formula, with integration carried out over over the space $6H_1$, consisting of 6 copies of $H_1(\Sigma)$, where Σ is a Seifert surface for K.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.