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Questions, Conjectures, Expectations, Dreams.
Question 1. What’s the relationship between Θ and the
Garoufalidis-Kashaev invariants [GK, GL]?
Conjecture 2. On classical (non-virtual) knots, θ always has he-
xagonal (D6) symmetry.
Conjecture 3. θ is the ϵ1 contribution to the “solvable appro-
ximation” of the sl3 universal invariant, obtained by running the
quantization machinery on the double D(b, b, ϵδ), where b is the
Borel subalgebra of sl3, b is the bracket of b, and δ the cobracket.
See [BV2, BN1, Sch]
Conjecture 4. θ is equal to the “two-loop contribution to the Kon-
tsevich Integral”, as studied by Garoufalidis, Rozansky, Kricker,
and in great detail by Ohtsuki [GR, Ro1, Ro2, Ro3, Kr, Oh].
Fact 5. θ has a perturbed Gaussian integral formula, with inte-
gration carried out over over a space 6E, consisting of 6 copies of
the space of edges of a knot diagram D. See [BN2].
Conjecture 6. For any knot K, its genus g(K) is bounded by the
T1-degree of θ: 2g(K) ≥ degT1

θ(K).
Conjecture 7. θ(K) has another perturbed Gaussian integral for-
mula, with integration carried out over over the space 6H1, con-
sisting of 6 copies of H1(Σ), where Σ is a Seifert surface for K.
Expectation 8. There are many further invariants like θ, given by
Green function formulas and/or Gaussian integration formulas.
One or two of them may be stronger than θ and as computable.
Dream 9. These invariants can be explained by something less
foreign than semisimple Lie algebras.
Dream 10. θ will have something to say about ribbon knots.

Theorem. With c = (s, i, j), c0 = (s0, i0, j0),
and c1 = (s1, i1, j1) denoting crossings, there is
a quadratic R11(c) ∈ Q(Tν)[gναβ : α, β ∈ {i, j}],
a cubic R12(c0, c1) ∈ Q(Tν)[gναβ : α, β ∈ {i0, j0, i1, j1}], and a
linear Γ1(φ, k) such that the following is a knot invariant:

θ(D) B ∆1∆2∆3︸  ︷︷  ︸
normalization,

see later
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If these pictures remind you of Feynman diagrams, it’s because
they are Feynman diagrams [BN2].
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Lemma 1. The traffic function gαβ is a “relative invariant”:
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Proof.

Lemma 2. With k+ B k + 1, the “g-rules” hold
near a crossing c = (s, i, j):
g jβ = g j+β + δ jβ giβ = T sgi+β + (1−T s)g j+β + δiβ g2n+,β = δ2n+,β

gαi+ = T sgαi + δαi+ gα j+ = gα j + (1 − T s)gαi + δα j+ gα,1 = δα,1
Corollary 1. G is easily computable, for AG = I (= GA), with A
the (2n+1)×(2n+1) identity matrix with additional contributions:

c = (s, i, j) 7→
A col i+ col j+

row i −T s T s − 1
row j 0 −1

For the trefoil example, we have:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1
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This picture gave the invariant its name

Note. The Alexander polynomial ∆ is given by
∆ = T (−φ−w)/2 det(A), with φ =

∑
k φk, w =

∑
c s.

We also set ∆ν B ∆(Tν) for ν = 1, 2, 3.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-241030.
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