
Some Rigor. (Exercises hints and partial solutions at end)
Exercise 1. Show that if two SPQ’s S 1 and S 2 on V satisfy σ(S 1+U) =
σ(S 2 + U) for every quadratic U on V , then they have the same shifts
and the same domains.
Exercise 2. Show that if two full quadratics Q1 and Q2 satisfy σ(Q1 +

U) = σ(Q2 + U) for every U, then Q1 = Q2.
Proof of Theorem 1’. Fix W and consider triples (V, S , ϕ : V → W)
where S = (s,D,Q) is an SPQ on V . Say that two triples are “push-
equivalent”, (V1, S 1, ϕ1) ∼ (V2, S 2, ϕ2) if for every quadratic U on W,

σV1 (S 1 + ϕ
∗
1U) = σV2 (S 2 + ϕ

∗
2U).

Given our (V, S , ϕ), we need to show:
1. There is an SPQ S ′ on W such that (V, S , ϕ) ∼ (W, S ′, I).
2. If (W, S ′, I) ∼ (W, S ′′, I) then S ′ = S ′′.
Property 2 is easy (Exercises 1, 2). Property 1 follows from the follow-
ing three claims, each of which is easy.
Claim 1. If v ∈ ker ϕ ∩ D(S ), and λ B Q(v, v) , 0, then (V, S , ϕ) ∼

(
V/⟨v⟩,

(
s+sign(λ),D(S )/⟨v⟩,Q−λ−1Q(−, v) ⊗ Q(v,−)

)
, ϕ/⟨v⟩

)
.

So wlog Q|ker ϕ = 0 (meaning, Q|ker ϕ⊗ker ϕ = 0). □
Claim 2. If Q|ker ϕ = 0 and v ∈ ker ϕ ∩ D(S ), let V ′ = ker Q(v,−) and
then (V, S , ϕ) ∼ (V ′, S |V ′ , ϕ|V ′ ) so wlog Q|V⊗ker ϕ+ker ϕ⊗V = 0. □
Claim 3. If Q|V⊗ker ϕ+ker ϕ⊗V = 0 then S = ϕ∗S ′ for some SPQ S ′ on im ϕ
and then (V, S , ϕ) ∼ (W, S ′, I). □ □
Proof of Theorem 2. The functoriality of pullbacks needs no proof.

Now assume V0
α−→ V1

β−→ V2 and that S is an SPQ on V0. Then
for every SPQ U on V2 we have, using reciprocity three times, that
σ(β∗α∗S + U) = σ(α∗S + β∗U) = σ(S + α∗β∗U) = σ(S + (βα)∗U) =
σ((βα)∗S + U). Hence β∗α∗S = (βα)∗S . □

Y ν //
µ ��

W
γ��

V
β
//

>>

Z

Definition. A commutative square as on the right is called
admissible if γ∗β∗ = ν∗µ∗.
Lemma 1. If V = W = Y = Z and β = γ = µ = ν = I, the
square is admissible. □
Lemma 2. The following are equivalent:
1. A square as above is admissible.

Y ν //
µ ��

W
γ��
⊣ S 2

S 1 ⊢ V
β
// Z

2. The Pairing Condition holds. Namely, if S 1 is
an SPQ on V (write S 1 ⊢ V) and S 2 ⊢ W, then
σ(µ∗S 1 + ν

∗S 2) = σ(β∗S 1 + γ∗S 2).
Y ν //
µ ��

W
γ��~~

V
β
// Z

3. The square is mirror admissible: β∗γ∗ = µ∗ν∗.
Proof. Using Exercises 1 and 2 below, and then using re-
ciprocity on both sides, we have ∀S 1 γ

∗β∗S 1 = ν∗µ∗S 1 ⇔
∀S 1∀S 2 σ(γ∗β∗S 1+S 2) = σ(ν∗µ∗S 1+S 2)⇔ ∀S 1∀S 2 σ(β∗S 1+γ∗S 2) =
σ(µ∗S 1 + ν

∗S 2), and thus 1 ⇔ 2. But the condition in 2 is symmetric
under β↔ γ, µ↔ ν, so also 2⇔ 3. □
Lemma 3. If the first diagram below is admissible, then so is the se-
cond. Y ν //

µ ��
W
γ��

V
β
//

>>

Z

Y ν //
µ ��

W
γ⊕0��

V
β⊕0
//

88

Z ⊕ F

□

Lemma 4. A pushforward by an inclusion is the do nothing operation
(though note that the pushforward via an inclusion of a fully defined
quadratic retains its domain of definition, which now may become par-
tial). □

V ι //
ϕ ��

V ⊕C
ϕ⊕I��

W
ι
//

77

W ⊕C

Lemma 5. For any linear ϕ : V → W, the diagram
on the right is admissible, where ι denotes the inclu-
sion maps.
Proof. Follows easily from Lemma 4. □
Definition. If S is an SPQ with domain D and quadratic Q, the radical
of S is the radical of Q considered as a fully-defined quadratic on D.
Namely, rad S B {u ∈ D : ∀v ∈ D, Q(u, v) = 0}.

Lemma 6. Always, ϕ(rad S ) ⊂ rad ϕ∗S .
Proof. Pick w ∈ ϕ(rad S ) and repeat the proof of Theorem 1’ but no-
w considering quadruples (V, S , ϕ, v), where (V, S , ϕ) are as before and
v ∈ rad S satisfies ϕ(v) = w. Clearly our initial triple (V, S , ϕ) can be
extended to such a quadruple, and it is easy to repeat the steps of the
proof of Theorem 1’ extending everything to such quadruples. □
We have to acknowledge that our proof of Lemma 6 is ugly. We wish
we had a cleaner one.
Exercise 3. Show that if two SPQ’s S 1 and S 2 on V ⊕ A satisfy
A ⊂ rad S i and σ(S 1 + π

∗U) = σ(S 2 + π
∗U) for every quadratic U

on V , where π : V ⊕ A→ V is the projection, then S 1 = S 2.
Exercise 4. Show that if ϕ : V → W is surjective and Q is a quadratic
on W, then σ(Q) = σ(ϕ∗Q).
Exercise 5. Show that always, ϕ∗ϕ∗S = S |im ϕ.

V ⊕C
ϕ+ //

α ��
W ⊕C

β��
V

ϕ
//

66

W

Lemma 7. For any linear ϕ : V → W, the dia-
gram on the right is admissible, where ϕ+ B ϕ⊕ I
and α and β denote the projection maps.
Proof. Let S be an SPQ on V . Clearly C ⊂
β∗ϕ∗S . Also, C ⊂ radα∗S so by Lemma 6, C = ϕ+(C) ⊂ ϕ+(radα∗S ) ⊂
rad ϕ+∗α

∗S . Hence using Exercise 3, it is enough to show thatσ(ϕ+∗α
∗S+

β∗U) = σ(β∗ϕ∗S + β∗U) for every U on W. Indeed, σ(ϕ+∗α
∗S + β∗U)

(1)
=

σ(β∗ϕ+∗α
∗S +U)

(2)
= σ(ϕ∗α∗α∗S +U)

(3)
= σ(ϕ∗S +U)

(4)
= σ(β∗(ϕ∗S +U))

(5)
=

σ(β∗ϕ∗S +β∗U), using (1) reciprocity, (2) the commutativity of the dia-
gram and the functoriality of pushing, (3) Exercise 5, (4) Exercise 4,
and (5) the additivity of pullbacks. □
Lemma 8. If the first diagram below is admissible, then so are the other

two. Y ν //
µ ��

W
γ��

V
β
//

>>

Z

Y ⊕ E ν⊕0 //
µ⊕I ��

W
γ��

V ⊕ E
β⊕0
//

88

Z

Y ν⊕0 //
µ ��

W ⊕ F
γ⊕I��

V
β⊕0
//

88

Z ⊕ F

Proof. In the diagram

Y ⊕ E π //
µ⊕I ��

Y ν //
µ ��

W
γ��

ι // W ⊕ F
γ⊕I��

V ⊕ E
π
//

88

V
β
//

::

Z
ι
//

88

Z ⊕ F,

with π marking projections and ι inclusions, the left square is admissi-
ble by Lemma 7, the middle square by assumption, and the right square
by Lemma 5. Along with the functoriality of pushforwards this shows
the admissibility of both the left and the right 1 × 2 subrectangles, and
these are the diagrams we wanted. □

A ⊕ E ⊕ F //

��
A ⊕C ⊕ F

��
A ⊕ B ⊕ E //

44

A ⊕ B ⊕C ⊕ D

Proof of Theorem 3. Decompose Z =
A⊕B⊕C⊕D, where A = im β∩ im γ,
im β = A⊕B, and im γ = A⊕C. Write
V ≃ A⊕B⊕E with β = I on A⊕B yet β = 0 on E, and write W ≃ A⊕C⊕F
with γ = I on A ⊕ C yet γ = 0 on F. Then Y = V ⊕Z W ≃ A ⊕ E ⊕ F
and our square is as shown on the right, with all maps equal to I on
like-named summands and equal to 0 on non-like-named summands.
But this diagram is admissible: build it up using Lemma 1 for the A’s,
and then Lemma 8 for E and C, and then again Lemma 8 along with
the mirror property of Lemma 2 for B and F, and then Lemma 3 for D.

□
To prove Theorem 4, given three1 SPQ’s S 1, S 2, and S 3, we need to
show that planar-multiplying them in two steps, first using a planar con-
nection diagram DI (I for Inner) to yield S 6 = S(DI)(S 2, S 3) and then
using a second planar connection diagram DO (O for Outer) to yield
S(DO)(S 1, S 6), gives the same answer as multiplying them all at once
using the composition planar connection diagram DB = DO ◦6 DI (B for
Big) to yield S(DB)(S 1, S 2, S 3).2 An example should help:

1Truly, we need the same for any number of input SPQ’s that are divided into two groups, “multiply in the first step” and “multiply in the second step”. But
there’s no added difficulty here, only an added notational complexity.

2Aren’t we sassy? We picked “6” for the name of the product of “2” and “3”.

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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