Axioms. One axiom is primary and interesting,

- ► Contractions commute! Namely, $c_{x,\xi} / |c_{y,\eta} = c_{y,\eta} / |c_{x,\xi}$ (or in old-speak, $c_{y,\eta} \circ c_{x,\xi} = c_{x,\xi} \circ c_{y,\eta}$).
- And the rest are just what you'd expect:
- \blacktriangleright \Box is commutative and associative, and it commutes with $c_{,\cdot}$ and with $\sigma_{,\cdot}$ whenever that makes sense.
- $c_{,,}$ is "natural" relative to renaming: $c_{x,\xi} = \sigma_y^x / \sigma_\eta^\xi / c_{y,\eta}$.
- $\sigma_{\xi}^{\xi} = \sigma_{x}^{x} = Id, \ \sigma_{\eta}^{\xi} / \sigma_{\zeta}^{\eta} = \sigma_{\zeta}^{\xi}, \ \sigma_{y}^{x} / \sigma_{z}^{y} = \sigma_{z}^{x}$, and renaming operations commute where it makes sense.

Comments.

- We can relax $|\mathcal{X}| = |X|$ at no cost.
- We can lose the distinction between X and X and get "circuit algebras".
- ▶ There is a "coloured version", where $\mathcal{T}(\mathcal{X}, X)$ is replaced with $\mathcal{T}(\mathcal{X}, X, \lambda, I)$ where $\lambda : \mathcal{X} \to C$ and $I : X \to C$ are "colour functions" into some set *C* of "colours", and contractions $c_{x,\xi}$ are allowed only if x and ξ are of the same colour, $I(x) = \lambda(\xi)$. In the world of tangles, this is "coloured tangles".

2. Heaven is a Place on Earth

(A version of the main results of Archibald's thesis, [Ar]).

Let us work over the base ring $\mathcal{R} = \mathbb{Q}[\{T^{\pm 1/2} \colon T \in C\}]$. Set

$$\mathcal{A}(\mathcal{X}, X) \coloneqq \{ w \in \Lambda(\mathcal{X} \sqcup X) \colon \deg_{\mathcal{X}} w = \deg_{X} w \}$$

(so in particular the elements of $\mathcal{A}(\mathcal{X}, X)$ are all of even degree). The union operation is the wedge product, the renaming operations are changes of variables, and $c_{x,\xi}$ is defined as follows. Write $w \in \mathcal{A}(\mathcal{X}, X)$ as a sum of terms of the form uw' where $u \in \Lambda(\xi, x)$ and $w' \in \mathcal{A}(\mathcal{X} \setminus \xi, X \setminus x)$, and map u to 1 if it is 1 or $x\xi$ and to 0 is if is ξ or x:

$$1w' \mapsto w', \quad \xi w' \mapsto 0, \quad xw' \mapsto 0, \quad x\xi w' \mapsto w'.$$

Proposition. \mathcal{A} is a contraction algebra.

We construct a morphism of coloured contraction algebras $\mathcal{A} \colon \mathcal{T} \to \mathcal{A}$ by declaring

$$\begin{split} X_{ijkl}[S,T] &\mapsto T^{-1/2} \exp\left(\left(\xi_{l} \quad \xi_{i}\right) \begin{pmatrix} 1 & 1-T \\ 0 & T \end{pmatrix} \begin{pmatrix} x_{j} \\ x_{k} \end{pmatrix}\right) \\ \bar{X}_{ijkl}[S,T] &\mapsto T^{1/2} \exp\left(\left(\xi_{i} \quad \xi_{j}\right) \begin{pmatrix} T^{-1} & 0 \\ 1-T^{-1} & 1 \end{pmatrix} \begin{pmatrix} x_{k} \\ x_{l} \end{pmatrix}\right) \\ P_{ij}[T] &\mapsto \exp(\xi_{i}x_{j}) \end{split}$$

with

 $\begin{array}{c|cccc} k & j & i & k & j \\ l & i & i & j & T \\ k & i & j & T \\ X_{ijkl}[S, T] & \bar{X}_{ijkl}[S, T] & P_{ij}[T] \end{array}$

(Note that the matrices appearing in these formulas are the Burau matrices).

Alternative Formulations.

- $c_{x,\xi}w = \iota_{\xi}\iota_{x}e^{x\xi}w$, where ι denotes interior multiplication.
- Using Fermionic integration, $c_{x,\xi}w = \int e^{x\xi} w \, d\xi dx.$
- ► $c_{x,\xi}$ represents composition in exterior algebras! With $X^* := \{x^* : x \in X\}$, we have that Hom $(\Lambda X, \Lambda Y) \cong \Lambda(X^* \sqcup Y)$ and the following square commutes:

Similarly, $\Lambda(\mathcal{X} \sqcup X) \cong (H^*)^{\otimes \mathcal{X}} \otimes H^{\otimes X}$ where H is a 2-dimensional "state space" and H^* is its dual. Under this identification, $c_{x,\xi}$ becomes the contraction of an H factor with an H^* factor.

Theorem.

If *D* is a classical link diagram with *k* components coloured T_1, \ldots, T_k whose first component is open and the rest are closed, if *MVA* is the multivariable Alexander polynomial of the closure of *D* (with these colours), and if ρ_j is the counterclockwise rotation number of the *j*th component of *D*, then

$$\mathcal{A}(D) = T_1^{-1/2}(T_1 - 1) \left(\prod_j T_j^{
ho_j/2}\right) \cdot MVA \cdot (1 + \xi_{\mathsf{in}} \wedge x_{\mathsf{out}})$$

(\mathcal{A} vanishes on closed links).

3. An Implementation of \mathcal{A}

If I didn't implement I wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Alpha.nb at http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are plain. We start with an implementation of elements ("Wedge") of exterior algebras, and of the wedge product ("WP"):

WP[Wedge[u___], Wedge[v___]] := Signature[{u, v}] * Wedge @@ Sort[{u, v}]; WP[0, _] = WP[_, 0] = 0; WP[A_, B_] := Expand[Distribute[A ** B] /. (a_. * u_Wedge) ** (b_. * v_Wedge) :> a b WP[u, v]]; WP[Wedge[_] + Wedge[a] - 2 b ^ a, Wedge[_] - 3 Wedge[b] + 7 c ^ d] Wedge[] + Wedge[a] - 3 Wedge[b] - a ^ b + 7 c ^ d + 7 a ^ c ^ d + 14 a ^ b ^ c ^ d We then define the exponentiation map in exterior algebras ("WExp") by summing the series and stopping the sum once the current term ("t") vanishes: WExp[A_] := Module[{s = Wedge[_], t = Wedge[_], k = 0}, While[t =! = 0, s += (t = Expand[WP[t, A] / (++k)])]; s] WExp[a \lambda b + c \lambda d + e \lambda f] Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda c \lambda d + e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda b \lambda b \lambda f + a \lambda b \lambda b \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda f + a \lambda b \lambda b \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda f + a \lamb

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/