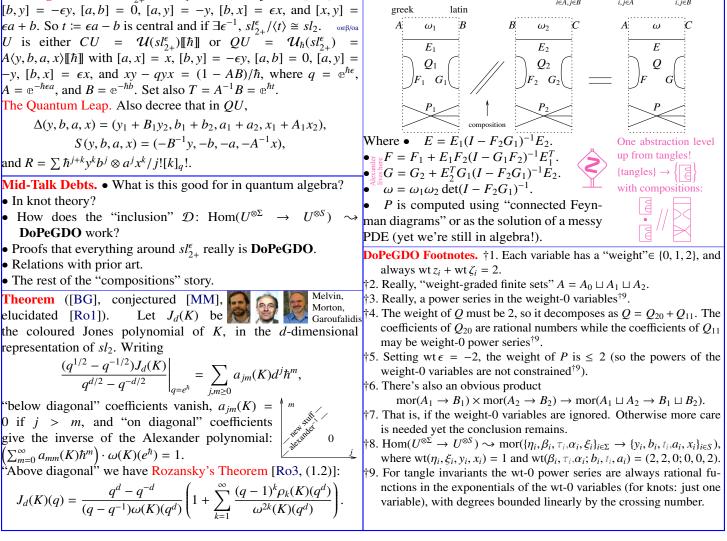
Dror Bar-Natan: Talks: UCLA-191101 Everything around sl_{2+}^{ϵ} is **DoPeGDO**. So what?


Thanks for inviting me to UCLA! Continues Rozansky [Ro1,
 ωεβ:=http://drorbn.net/la19/
 Ro2, Ro3] and Overbay [Ov], joint with van der Veen [BV].

Abstract. I'll explain what "everything around" means: classical Knot theorists should rejoice because all this leads to very poand quantum m, Δ , S, tr, R, C, and θ , as well as P, Φ , J, \mathbb{D} , werful and well-behaved poly-time-computable knot invariants. and more, and all of their compositions. What **DoPeGDO** means: Quantum algebraists should rejoice because it's a realistic playthe category of Docile Perturbed Gaussian Differential Operators. ground for testing complicated equations and theories. And what sl_{2+}^{ϵ} means: a solvable approximation of the semisimple Lie algebra sl_2 .

Conventions. 1. For a set *A*, let
$$z_A := \{z_i\}_{i \in A}$$
 and let $\zeta_A := \{z_i^* = \zeta_i\}_{i \in A}$.^{†1} 2. Everything converges!

Less Abstract **DoPeGDO** := The category with objects finite sets^{$\dagger 2$} and mor($A \rightarrow B$): $\{\mathcal{F} = \omega \exp(Q + P)\} \subset \mathbb{Q}[[\zeta_A, z_B, \epsilon]]$ $\mathcal{D}_{\rightarrow}$ $S: U \rightarrow U$ Where: • ω is a scalar.^{†3} • Q is a "small" ϵ -free $m: U \otimes U \rightarrow U$ $\Delta: U \rightarrow U \otimes U$ quadratic in $\zeta_A \cup z_B$.^{†4} • *P* is a "docile perturba-4D Metrized Lie Algebras tion": $P = \sum_{k \ge 1} \epsilon^k P^{(k)}$, where deg $P^{(k)} \le 2k + 2$.^{†5} solvable • Compositions:^{†6} cup cap algebras $\mathcal{F}/\!\!/\mathcal{G} = \mathcal{G} \circ \mathcal{F} \coloneqq \left(\mathcal{G}|_{\zeta_i \to \partial_{z_i}} \mathcal{F}\right)_{z_i=0} = \left(\mathcal{F}|_{z_i \to \partial_{\zeta_i}} \mathcal{G}\right)_{z_i=0}$ sl_{2}^{ϵ} $\rightarrow U/wx = xw$ $R \in OU \otimes OU$ $C^{\pm 1} \in QU$ **Cool!** $(V^*)^{\otimes \Sigma} \otimes V^{\otimes S}$ explodes; the ranks of qua-Cartan's θ , the Abelian dratics and bounded-degree polynomials grow the Vassiliev algebra Dequantizator, slowly!^{†7} Representation theory is over-rated! and more.. algebras isomorphic Cool! How often do you see a computational toto $sl_{2+} \coloneqq sl_2 + 1D$ $\Phi \in CU^{\otimes}$ $J \in CU \otimes CU$ olbox so successful? **Our Algebras.** Let $sl_{2+}^{\epsilon} \coloneqq L\langle y, b, a, x \rangle$ subject to [a, x] = x, **Compositions (1).** In mor $(A \to B)$, $Q = \sum_{i \in A, j \in B} E_{ij} \zeta_i z_j + \frac{1}{2} \sum_{i, j \in A} F_{ij} \zeta_i \zeta_j + \frac{1}{2} \sum_{i, j \in B} G_{ij} z_i z_j$

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907, http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.