The Real Thing. In the algebra QU_{ϵ} , over $\mathbb{Q}[[\hbar]]$ using the yaxt **Real Zipping** is a minor mess, and is done in two phases: order, $T = e^{\hbar t}$, $\overline{T} = T^{-1}$, $\mathcal{A} = e^{\alpha}$, and $\overline{\mathcal{A}} = \mathcal{A}^{-1}$, we have τa -phase ξy -phase $\tilde{R}_{ij} = e^{\hbar(y_i x_j - t_i a_j)} \left(1 + \epsilon \hbar \left(a_i a_j - \hbar^2 y_i^2 x_j^2 / 4 \right) + O(\epsilon^2) \right)$ ζ -like variables а ξ v *z*-like variables t α х in $\mathcal{S}(B_i, B_j)$, and in $\mathcal{S}(B_1^*, B_2^*, B)$ we have η Already at $\epsilon = 0$ we get the best known formulas for the Alexan- $\tilde{m} = e^{(\alpha_1 + \alpha_2)a + \eta_2 \xi_1 (1 - T)/\hbar + (\xi_1 \bar{\mathcal{A}}_2 + \xi_2)x + (\eta_1 + \eta_2 \bar{\mathcal{A}}_1)y} \left(1 + \epsilon \lambda + O(\epsilon^2)\right),$ der polynomial! where $\lambda = \frac{2a\eta_2\xi_1T + \eta_2^2\xi_1^2(3T^2 - 4T + 1)}{4\hbar - \eta_2\xi_1^2(3T - 1)x\bar{\mathcal{A}}_2/2}$ Generic Docility. A "docile perturbed Gaussian" in the variables $-\eta_2^2\xi_1(3T-1)y\bar{\mathcal{A}}_1/2+\eta_2\xi_1xy\hbar\bar{\mathcal{A}}_1\bar{\mathcal{A}}_2$ $(z_i)_{i \in S}$ over the ring *R* is an expression of the form Finally. $e^{q^{ij}z_i z_j} P = e^{q^{ij}z_i z_j} \left(\sum_{k>0} \epsilon^k P_k \right),$ $\tilde{\Delta} = e^{\tau(t_1+t_1)+\eta(y_1+T_1y_2)+\alpha(a_1+a_2)+\xi(x_1+x_2)} (1+O(\epsilon)) \in \mathcal{S}(B^*, B_1, B_2),$ and $\tilde{S} = e^{-\tau t - \alpha a - \eta \xi (1 - \bar{T}) \mathcal{A}/\hbar - \bar{T} \eta y \mathcal{A} - \xi x \mathcal{A}} (1 + O(\epsilon)) \in \mathcal{S}(B^*, B).$ where all coefficients are in R and where P is a "docile series": Zipping Issue. The $\deg P_k \leq 4k.$ Our Docility. In the case of QU_{ϵ} , all invariants and operations are bound lies half-zipped). of the form $e^{L+Q}P$, where **Zipping.** If $P(\zeta^j, z_i)$ is a polynomial, or whenever otherwi-*L* is a quadratic of the form $\sum l_{z\zeta} z\zeta$, where *z* runs over $\{t_i, \alpha_i\}_{i \in S}$ se convergent, set $\langle P(\zeta^j, z_i) \rangle_{(\zeta^j)} = P(\partial_{z_j}, z_i) \Big|_{z_i=0}$. (E.g., if P =and ζ over $\{\tau_i, a_i\}_{i \in S}$, with integer coefficients $l_{z\zeta}$. • Q is a quadratic of the form $\sum q_{z\zeta} z\zeta$, where z runs over $\sum a_{nm} \zeta^n z^m$ then $\langle P \rangle_{\zeta} = \sum a_{nm} \partial_z^n z^m \Big|_{z=0} = \sum n! a_{nn}$. $\{x_i, \eta_i\}_{i \in S}$ and ζ over $\{\xi_i, y_i\}_{i \in S}$, with coefficients $q_{z\zeta}$ in the ring **The Zipping / Contraction Theorem.** If $P = P(\zeta^{j}, z_{i})$ has a R_S of rational functions in $\{T_i, \mathcal{A}_i\}_{i \in S}$. finite ζ -degree and the y's and the q's are "small" then *P* is a docile power series in $\{y_i, a_i, x_i, \eta_i, \xi_i\}_{i \in S}$ with coefficients $\left\langle P \mathbb{e}^{c+\eta^{i} z_{i}+y_{j} \zeta^{j}+q_{j}^{i} z_{i} \zeta^{j}} \right\rangle_{(\zeta^{j})} = \det(\tilde{q}) \mathbb{e}^{c+\eta^{i} \tilde{q}_{i}^{k} y_{k}} \left\langle P \left| \begin{array}{c} \zeta^{j} \rightarrow \zeta^{j}+\eta^{i} \tilde{q}_{i}^{j} \\ z_{i} \rightarrow \tilde{q}_{i}^{k} (z_{k}+y_{k}) \end{array} \right\rangle_{(\zeta^{j})} \right\rangle$ in R_S , and where deg $(y_i, a_i, x_i, \eta_i, \xi_i) = (1, 2, 1, 1, 1)$. **Docilily Matters!** The rank of the space of docile series to ϵ^k is polynomial in the number of variables |S|. 11111 where \tilde{q} is the inverse matrix of 1 - q: $(\delta^i_i - q^i_i)\tilde{q}^j_k = \delta^i_k$. At $\epsilon^2 = 0$ we get the Rozansky-Overbay [Ro1, Ro2, Ro3, Ov] Exponential Reservoirs. The true Hilbert hotel is exp! Remove invariant, which is stronger than HOMFLY-PT polynomial and one x from an "exponential reservoir" of x's and you are left with Khovanov homology taken together! the same exponential reservoir: In general, get "higher diagonals in the Melvin-Morton- $\mathbb{e}^{x} = \left[\dots + \frac{xxxxx}{120} + \dots \right] \xrightarrow{\partial_{x}} \left[\dots + \frac{xxxxx}{120} + \dots \right] = (\mathbb{e}^{x})' = \mathbb{e}^{x},$ Rozansky expansion of the coloured Jones polynomial" [MM, BNG], but why spoil something good? and if you let each element choose left or right, you get twice the same reservoir: D [BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-References. ζ's Morton-Rozansky conjecture, Invent, Math. 125 (1996) 103-133. exp exp $e^x \xrightarrow{x \to x_l + x_r} e^{x_l + x_r} = e^{x_l} e^{x_r}$ [BV] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, arXiv:1708.04853. [Fa] L. Faddeev, Modular Double of a Quantum Group, arXiv:math/9912078. A Graphical Proof. Glue [GR] S. Garoufalidis and L. Rozansky, The Loop Exaposion of the Kontsevich q a top to bottom on the right, Integral, the Null-Move, and S-Equivalence, arXiv:math.GT/0003187. in all possible ways. Several "the q-[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. С Α scenarios occur: machine" Math. Phys. 169 (1995) 501-520. 1. Start at A, go through the q-machine $k \ge 0$ times, stop at B. [Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \epsilon \beta / Ov$. Get $\langle P(\zeta, \sum_{k\geq 0} q^k z) \rangle = \langle P(\zeta, \tilde{q}z) \rangle.$ Qu] C. Quesne, Jackson's q-Exponential as the Exponential of a Series, arXiv: 2. Loop through the *q*-machine and swallow your own tail. Get math-ph/0305003. Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones $\exp\left(\sum q^k/k\right) = \exp(-\log(1-q)) = \tilde{q}.$ 3. . . . polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. By the reservoir splitting principle, these scenarios contribute 175-2 (1996) 275-296, arXiv:hep-th/9401061. multiplicatively. □ [Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-Implementation. $(\mathbb{E}[Q, P] \text{ means } \mathbb{e}^Q P)$ $\omega \epsilon \beta / Zip$ 1 (1998) 1–31, arXiv:q-alg/9604005. **Zip**_{*S*S_List}@**E**[**Q**_, **P**_] := [Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Module[{ ζ , z, zs, c, ys, η s, qt, zrule, ζ rule}, Conjecture, arXiv:math/0201139. zs = Table[^c/₅, {^c/₅}]; [Za] D. Zagier, The Dilogarithm Function, in Cartier, Moussa, Julia, and Vac = Q / . Alternatives @@ ($\zeta s \cup zs$) $\rightarrow 0$; nhove (eds) Frontiers in Number Theory, Physics, and Geometry II. Springer, ys = Table $[\partial_{\zeta} (Q / . Alternatives @@ zs \rightarrow 0), {\zeta, \zetas}];$ Berlin, Heidelberg, and $\omega \epsilon \beta / Za$. $\eta s = Table[\partial_z (Q / . Alternatives @@ \zeta s \rightarrow 0), \{z, zs\}];$ qt = Inverse@Table[$K\delta_{z,\zeta^*} - \partial_{z,\zeta}Q$, { ζ , ζ s}, {z, zs}]; $zrule = Thread[zs \rightarrow qt.(zs + ys)];$ $grule = Thread[gs \rightarrow gs + \eta s.qt];$ "God created the knots, all else in topology is the work of mortals.' Simplify /@ Leopold Kronecker (modified) www.katlas.org 抐 \mathbb{E} [c + η s.qt.ys, Det[qt] Zip_{ζ s}[P /. (zrule \bigcup grule)]]];

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ohio-1901