The Taylor Remainder Formulas. Let f be a §
smooth function, let P, ,(x) be the nth order Tay- =g
lor polynomial of f around a and evaluated at x,
so with a; = f®(a)/k!,
Pra(x) = Y ax(x = a),

k=0
and let R, ,(x) := f(x) — P, 4(x) be the “mistake”
or “remainder term”. Then
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(In particular, the Taylor expansions of sin, cos, exp, and of seve-
ral other lovely functions converges to these functions everywhe-

re, no matter the odds.) e R
IProof of (1) (for adults; I lear- 1 a X
ned it from my son Itai). The, ~ R
fundamental theorem of calcu- | a X X
lus says that if g(a) = O then | =_ R’ _
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when x > a, and with similar logic when x < a,
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de-Fubini (obfuscation in the name of simplicity).
Prematurely aborting the above chain of equalities,
we find that for any 1 <k<n+ 1,
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R(x) = dt R (1) ———.
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But these are easy to prove by induction using inte-

igration by parts, and there’s no need to invoke Fubini.
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artial Derivatives Commute. Make Fubini Smile Again!
If f: R> - Ris C? near a € R?, then fi»(a) = fo1(a).
roof. Let x € R? be small, and let R := [a;, a1 +x1]1x[aa, az+x2].
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flz(a)NﬁL\fm:ﬁf dty (fi(ti, az + x2) — fi(t1, a2))
( flar + x1,a2 + x2) — far + x1,a2) )
|R| —f(ay,a; + x2) + f(ai, a2) ’

But the answer here is the same as in
1 1 A+ X2
Hi(a) ~ — ff21 = —f dt (fr(ar + x1, 1) = folar, b))
IRl Jr IR|
( flai +x,a2 + x2) — f(ay, a + x2) )
T —flai + x1,a2) + f(ay, a2) ’

and both of these approximations get better and better as x — 0.
O
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The Mean Value Theorem for Curves (MVT4C).
If y: [a,b] — R? is a smooth curve, then there is
some t; € (a, b) for which y(b) — y(a) and y(¢;)
are linearly dependent. If also y(a) = 0, and

y = (f;) and 7 # 0 # 7 on (a, b), then
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m = A1) when lucky, = @ R ‘
g y(a) de l’Hépal
IProof of (2). Iterate the lucky MVT4C as follows:
Riax) R, ) RV )
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it is Irrational following Ivan Niven, Bull.
IAmer. Math. Soc. (1947) pp. 509:
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/
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