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But Z lives inU, a complicated space. How do you extract infor-
mation out of it?
Solution 1, Representation Theory. Choose a finite dimensional
representation ρ of g in some vector space V . By luck and the
wisdom of Drinfel’d and Jimbo, ρ(R) ∈ V∗ ⊗ V∗ ⊗ V ⊗ V and
ρ(C) ∈ V∗ ⊗ V are computable, so Z is computable too. But in
exponential time!

Solution 2, Solvable Approximation. Work directly in Û(gk), w-
here gk = slk2 (or a similar algebra); everything is expressible
using low-degree polynomials in a small number of variables, h-
ence everything is poly-time computable!

Example 0. Take g0 = sl02 = Q〈h, e, l, f 〉, with h central and
[ f , l] = f , [e, l] = −e, [e, f ] = h. In it, using normal orderings,
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, and,

O
(
e
δe f | fe

)
= O

(
νeνδef | ef

)
with ν = (1 + hδ)−1.

Example 1. Take R = Q[ε]/(ε2 = 0) and g1 = sl12 = R〈h, e, l, f 〉,
with h central and [ f , l] = f , [e, l] = −e, [e, f ] = h − 2εl. In it,
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, where Λ is

4ν3δ2e2 f 2 +3ν3δ3he2 f 2 +8ν2δe f +4ν2δ2he f +4νδel f −2νδh+4l.
Fact. Setting hi = h (for all i) and t = e

h, the g1 invariant of any
tangle T can be written in the form

Zg1(T ) = O
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,

where L is linear, Q quadratic, and P quartic in the {ei, li, fi} with
ω and all coefficients polynomials in t. Furthermore, everything
is poly-time computable.

Abstract. Recently, Roland van der Veen and myself found that
there are sequences of solvable Lie algebras “converging” to any
given semi-simple Lie algebra (such as sl2 or sl3 or E8). Certain
computations are much easier in solvable Lie algebras; in particu-
lar, using solvable approximations we can compute in polynomial
time certain projections (originally discussed by Rozansky) of the
knot invariants arising from the Chern-Simons-Witten topologi-
cal quantum field theory. This provides us with the first strong
knot invariants that are computable for truly large knots.
But sl2 and sl3 and similar algebras occur in physics (and in
mathematics) in many other places, beyond the Chern-Simons-
Witten theory. Do solvable approximations have further applica-
tions?
Recomposing gln. Half is enough! gln ⊕ an = D(^, b, δ):

Now define glεn B D(^, b, εδ). Schematically, this is [^,^] = ^,
[_,_] = ε_, and [^,_] = _ + ε^. In detail, it is

[ei j, ekl]=δ jkeil − δliek j [ fi j, fkl]=εδ jk fil − εδli fk j

[ei j, fkl]=δ jk(εδ j<keil + δil(hi + εgi)/2 + δi>l fil)
−δli(εδk< jek j + δk j(h j + εg j)/2 + δk> j fk j)

[gi, e jk]= (δi j − δik)e jk [hi, e jk]=ε(δi j − δik)e jk

[gi, f jk]= (δi j − δik) f jk [hi, f jk]=ε(δi j − δik) f jk

Solvable Approximation. At ε = 1 and modulo h = g, the above
is just gln. By rescaling at ε , 0, glεn is independent of ε. We
let glkn be glεn regarded as an algebra over Q[ε]/εk+1 = 0. It is the
“k-smidgen solvable approximation” of gln!
Recall that g is “solvable” if iterated commutators in it ultimately
vanish: g2 B [g, g], g3 B [g2, g2], . . . , gd = 0. Equivalently, if it
is a subalgebra of some large-size ^ algebra.
Note. This whole process makes sense for arbitrary semi-simple
Lie algebras.

Chern-Simons-Witten. Given a knot γ(t) in
R3 and a metrized Lie algebra g, set Z(γ) B∫

A∈Ω1(R3,g)
DA e

ik cs(A)PExpγ(A),

where cs(A) B 1
4π

∫
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and

PExpγ(A) B
1∏

0

exp(γ∗A) ∈ U = Û(g),

and U(g) B 〈words in g〉/(xy − yx = [x, y]).
In a favourable gauge, one may hope that this
computation will localize near the crossings
and the bends, and all will depend on just two
quantities,

R =
∑

ai ⊗ bi ∈ U ⊗U and C ∈ U.
This was never done formally, yet R and C
can be “guessed” and all “quantum knot inva-
riants” arise in this way. So for the trefoil,

Z =
∑

i, j,k

Caib jakC2bia jbkC.

Why are “solvable algebras” any good? Contrary to common
beliefs, computations in semi-simple Lie algebras are just awful:

Yet in solvable algebras, exponentiation is fine and even BCH,
z = log(ex

e
y), is bearable:

Question. What else can you do with solvable approximation?
Chern-Simons-Witten theory is often “solved” using ideas from
conformal field theory and using quantization of various moduli
spaces. Does it make sense to use solvable approximation there
too? Elsewhere in physics? Elsewhere in mathematics?
See Also. Talks at George Washington University [ωεβ/gwu],
Indiana [ωεβ/ind], and Les Diablerets [ωεβ/ld], and a University
of Toronto “Algebraic Knot Theory” class [ωεβ/akt].
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What else can you do with solvable approximations? Thanks for the invitation!

C±1 C±1

C±1

ak

bi

C
ai

C

b j a j

bk

C C

Ribbon=Slice?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/McGill-1702/
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