1-Smidgen sl_2 Let g_1 be the 4-dimensional Lie algebra $g_1 = \langle b, c, u, w \rangle$ over the ring $R = \mathbb{Q}[\epsilon]/(\epsilon^2 = 0)$, with <i>b</i> central and with $[w, c] = w, [c, u] = u$, and $[u, w] = b - 2\epsilon c$, with CYBE $r_{ij} = (b_i - \epsilon c_i)c_j + u_iw_j$ in $\mathcal{U}(g_1)^{\otimes (i,j)}$. Over \mathbb{Q}, g_1 is a solvable approximation of sl_2 : $g_1 \supset \langle b, u, w, \epsilon b, \epsilon c, \epsilon u, \epsilon w \rangle \supset \langle b, \epsilon b, \epsilon c, \epsilon u, \epsilon w \rangle \supset 0$. O . (note: deg(b, c, u, w, ϵ) = (1, 0, 1, 0, 1)) O -Smidgen sl_2 ©. Let g_0 be g_1 at $\epsilon = 0$, or $\mathbb{Q}\langle b, c, u, w \rangle/([b, \cdot] = 0, [c, u] = u, [c, w] = -w, [u, w] = b$ with $r_{ij} = b_i c_j + u_i w_j$. It is $b^* \times b$ where b is the 2D Lie algebra $\mathbb{Q}\langle c, w \rangle$ and (b, u) is the dual basis of (c, w) . For topology, it is more valuable than g_1 / sl_2 , but topology already got by other means almost everything g_0 gives.	5. $ \mathbb{O}\left(e^{aw+\rho u+\rho uw} wu\right) = \mathbb{O}\left(v(1 + \epsilon v\Lambda)e^{v(-bap+aw+\rho u+\rho uw)} ucw\right) $ Here Λ is for $\Lambda \dot{o}\gamma o\varsigma$, "a principle of order and knowledge", a balanced quartic in α , β , u , c , and w : $ \Lambda = -bv(\alpha^2\beta^2v^2 + 4\alpha\beta\delta v + 2\delta^2)/2 + \beta^2\delta v^3(b\delta + 2)u^2/2 + \delta^3 v^3(3b\delta + 4)u^2w^2/2 + \beta\delta^2 v^3(2b\delta + 3)u^2w + \alpha\delta^2 v^3(2b\delta + 3)uw^2 + 2\delta v^2(b\delta + 2)(\alpha\beta v + \delta)uw + \alpha^2\delta v^3(b\delta + 2)w^2/2 + 2(\alpha\beta v + \delta)c + 2\beta\delta vuc + 2\delta^2 vucw + 2\alpha\delta vcw + \beta v^2(\alpha\beta v + 2\delta)u + \alpha v^2(\alpha\beta v + 2\delta)w. $ Proof. A lengthy computation. (Verification: $\omega \epsilon \beta$ /Big)
$[b', u] = -\epsilon u, [b', c] = 0$, and $[u, w] = b' - \epsilon c$. Now note that	Problem. We now need to normal-order perturbed Gaussians! Solution. Borrow some tactics from QFT: $\mathbb{O}(\epsilon P(c, u)e^{\gamma c+\beta u} uc) = \mathbb{O}(\epsilon P(\partial_{\gamma}, \partial_{\beta})e^{\gamma c+\beta u} uc) =$ and likewise $\mathbb{O}(\epsilon P(\partial_{\gamma}, \partial_{\beta})e^{\gamma c+e^{-\gamma}\beta u} cu),$ $\mathbb{O}\left(\epsilon P(u, w)e^{\alpha w+\beta u+\delta uw} wu\right) = \mathbb{O}\left(\epsilon P(\partial_{\beta}, \partial_{\alpha})ve^{v(-b\alpha\beta+\alpha w+\beta u+\delta uw)} ucw\right)$ Finally, the values of the generators $\checkmark, \urcorner, \overrightarrow{n}$, and \underline{u} , are set by
ordering Symbols. $\mathbb{O}(poly specs)$ plants the variables of <i>poly</i> in $S(\oplus_i \mathfrak{g})$ on several tensor copies of $\mathcal{U}(\mathfrak{g})$ according to <i>specs</i> . E.g., $\mathbb{O}(c_1^3 u_1 c_2 e^{u_3} w_3^9 x \colon w_3 c_1, y \colon u_1 u_3 c_2) = w^9 c^3 \otimes u e^u c \in \mathcal{U}(\mathfrak{g})_x \otimes \mathcal{U}(\mathfrak{g})_y$	solving many equations, non-uniquely. Pragmatic Simplifications. Set $t := e^b$, work with $v := (t-1)u/b$, and set $\mathbb{E}(\omega, L, Q, P) := \mathbb{O}\left(\omega^{-1}e^{L+Q/\omega}(1 + \epsilon\omega^{-4}P): (i: v_ic_iw_i)\right)$. Now $\omega \in R_S := \mathbb{Z}[t_i, t_i^{-1}]$ is Laurent, $L = \sum l_{ij} \log(t_i)c_j$ with $l_{ij} \in \mathbb{Z}$, $Q = \sum q_{ij}v_iw_j$ with $q_{ij} \in R_S$, and P is a quartic polynomial
mutative polynomials / power series	in v_i , c_j , w_k with coefficients in R_S . The operations are lightly modified, and the $\Lambda \acute{0}\gamma \circ \varsigma$ and the values of the generators become somewhat simpler, as in the implementation below. Rough complexity esti- mate, after $t_k \rightarrow t$. n : xing number; w : width, maybe $\frac{n}{A}\sum_{d=0}^{4} \frac{w^{4-d}}{E} \frac{w^d}{F} \frac{n^2}{G} = n^3 w^4 \in [n^5, n^7]$
$\sum_{i = 1}^{j} \frac{1}{i + j} = \mathbb{O}\left(\exp\left(b_{i}c_{j} + \frac{e^{b_{i}-1}}{b_{i}}u_{i}w_{j}\right) i:u_{i}, j:c_{j}w_{j}\right)$ Example. $Z(T_{0}) = \sum_{m,n} \frac{b_{i}^{m-n}(e^{b_{i}-1})^{n}}{m!n!}u^{n} \otimes c^{m}w^{n}.$ $\mathbb{O}\left(\exp\left(b_{5}c_{1} + \frac{e^{b_{5}-1}}{b_{5}}u_{5}w_{1} + b_{2}c_{4} + \frac{e^{b_{2}-1}}{b_{2}}u_{2}w_{4} - b_{3}c_{6} + \frac{e^{-b_{3}-1}}{b_{3}}u_{3}w_{6}\right)\right $	~ \sqrt{n} . A: go over stitchings in order. B: multiplication ops per
"ucw form" $x: c_1w_1u_2, y: u_3c_4w_4u_5c_6w_6 = \mathbb{O}(\zeta x: u_xc_xw_x, y: u_yc_yw_y)$ Goal. Write ζ as a Gaussian: ωe^{L+Q} where L bilinear in b_i and c_i with integer coefficients, Q a balanced quadratic in u_i and w_i with coefficients in $R_S := \mathbb{Q}(b_i, e^{b_i})$, and $\omega \in R_S$.	sings (mean times) and for all torus knots with up to 48 crossings:
3. $\mathbb{O}(e^{\delta uw} wu)e^{\beta u} = e^{\nu\beta u}\mathbb{O}(e^{\delta uw} wu)$, with $\nu = (1 + b\delta)^{-1}$	Conjecture (checked on the same collections). Given a knot \vec{K}^{0} with Alexander polynomial A , there is a polynomial ρ_1 such that
(a. expand and crunch. b. use $w = b\hat{x}, u = \partial_x$. c. use "scatter and glow".) 4. $\mathbb{O}(e^{\delta uw} wu) = \mathbb{O}(ve^{v\delta uw} uw)$ (same techniques) 5. $N^{wu} := \mathbb{O}(e^{\beta u + \alpha w + \delta uw} wu) \stackrel{\Rightarrow}{=} \mathbb{O}(ve^{-bv\alpha\beta + v\alpha w + v\beta u + v\delta uw} uw)$ 6. $N_k^{c_ic_j} := \mathbb{O}(\zeta c_ic_j) \stackrel{\Rightarrow}{=} \mathbb{O}(\zeta/(c_i, c_j \to c_k) c_k)$ Sneaky. α may contain (other) u 's, β may contain (other) w 's. Strand Stitching, m_k^{ij} , is defined as the composition $u_ic_i \overline{w_iu_j} c_jw_j \stackrel{N_x^{w_{ij}}}{\longrightarrow} u_i \overline{c_iu_x} \overline{w_xc_j} w_j \stackrel{N_x^{c_{iux}}/N_x^{w_{xc_j}}}{\longrightarrow} \overline{u_iu_x} \overline{c_xc_x} \overline{w_xw_j} $ $\underbrace{i,j,x \to k}{i,j,x \to k} u_k c_k w_k$	$P = A^2 \frac{(t-1)^3 \rho_1 + t^2 (2vw + (1-t)(1-2c))AA'}{(1-t)t}.$ Furthermore, <i>A</i> and ρ_1 are symmetric under $t \to t^{-1}$, so let A^+ and ρ_1^+ be their "positive parts", so e.g., $\rho_1(t) = \rho_1^+(t) + \rho_1^+(t^{-1}) - \rho_1^+(0).$ Power. On the 250 knots with at most 10 crossings, the pair (A, ρ_1) attains 250 distinct values, while (Khovanov, HOMFLY-PT) attains only 249 distinct values. To 11 crossings the numbers are (802, 788, 772) and to 12 they are (2978, 2883, 2786). Genus. Up to 12 xings, always $\deg \rho_1^+ \leq 2g - 1$, where g is
On to 1-smidgen invariants, where much is the same	the 3-genus of K (equallity for 2530 knots). This gives a lower bound on g in terms of ρ_1 (conjectural, but undoubtedly true). This bound is often weaker than the Alexander bound, yet for 10 of the 12-xing Alexander failures it does give the right answer.

This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at .../Indiana-1611/, .../LesDiablerets-1608/