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“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org
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Dror Bar-Natan: Academic Pensieve: 2014-04: BF2C:
http://drorbn.net/AcademicPensieve/2014-04/BF2C A Partial Reduction of BF Theory to Combinatorics, 2
Theorem 1 (with Cattaneo, Dalvit (credit, no blame)).In the rib-
bon case,eζ can be computed as follows:

Will the relationship with the Kashiwara-Vergne problem [BND]
necessarily arise here?

Plane curves.Shouldn’t we understand integral/ finite
type invariants of plane curves, in the style of Arnold’s
J+, J−, andSt[Ar], a bit better? Arnold
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Theorem 2. Using Gauss diagrams to represent knots andT-
component pure tangles, the above formulas define an invariant
in CW(FL(T))→ CW(T), “cyclic words inT”.
• Agrees with BN-Dancso [BND] and with [BN2]. • In-practice
computable!• Vanishes on braids.• Extends to w.• Contains
Alexander.• The “missing factor” in Levine’s factorization [Le]
(the rest of [Le] also fits, hence contains the MVA).• Related to
/ extends Farber’s [Fa]? • Should be summed and categorified.
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“an associator”

Sketch of Proof. In 4D ax-
ial gauge, only “drop down” red
propagators, hence in the ribbon
case, noM-trivalent vertices.S integrals are±1
iff “ground pieces” run on nested curves as below,
and exponentials arise when several propagators
compete for the same double curve. And then the
combinatorics is obvious. . .

Bubble-wrap-finite-type.
There’s an alternative defini-
tion of finite type in 3D, due
to Goussarov (see [BN1]). The
obvious parallel in 4D involves
“bubble wraps”. Is it any good?

Shielded tangles.In 3D, one can’t zoom in and compute “the
Chern-Simons invariant of a tangle”. Yet there are well-defined
invariants of “shielded tangles”, and rules for their compositions.
What would the 4D analog be?

Goussarov

Finite type.What are finite-type
invariants for 2-knots? What
would be “chord diagrams”?

Chern-Simons.When the domain of BF is restricted to ribbon
knots, and the target of Chern-Simons is restricted to treesand
wheels, they agree. Why?
Is this all? What
about the∨-invariant?
(the “true” triple link-
ing number)

Gnots. In 3D, a generic immersion ofS1 is an
embedding, a knot. In 4D, a generic immersion
of a surface has finitely-many double points (a
gnot?). Perhaps we should be studying these?
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Musings
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Continuing Joost Slingerland. . .

http://youtu.be/mHyTOcfF99o

http://youtu.be/YCA0VIExVhge
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/Vienna-1402/
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