
2Let xc denote the path on which L(x) attains its
minimum value, write x = xc + xq with xq ∈ W00,
and get

ψ(T, x) = c

∫
dx0ψ0(x0)

∫

W00

DxqeiL(xc+xq).

In our particular case L is quadratic in x, and there-
fore L(xc + xq) = L(xc) + L(xq) (this uses the fact
that xc is an extremal of L, of course). Plugging this
into what we already have, we get

ψ(T, x) = c

∫
dx0ψ0(x0)

∫

W00

DxqeiL(xc)+iL(xq)

= c

∫
dx0ψ0(x0)eiL(xc)

∫

W00

DxqeiL(xq).

Now this is excellent news, because the remaining
path integral over W00 does not depend on x0 or xn,
and hence it is a constant! Allowing c to change its
value from line to line, we get

ψ(T, x) = c

∫
dx0ψ0(x0)eiL(xc).

Lemma 3.4 now shows us that xc(t) = x0 cos t +
xn sin t. An easy explicit computation gives L(xc) =
−x0xn, and we arrive at our final result,

ψ(
π

2
, x) = c

∫
dx0ψ0(x0)e−ix0xn .

Notice that this is precisely the formula for the
Fourier transform of ψ0! That is, the answer to the
question in the title of this document is “the particle
gets Fourier transformed”, whatever that may mean.

3. The Lemmas

Lemma 3.1. For any two matrices A and B,

eA+B = lim
n→∞

(
eA/neB/n

)n
.

Proof. (sketch) Using Taylor expansions, we see that

e
A+B
n and eA/neB/n differ by terms at most propor-

tional to c/n2. Raising to the nth power, the two
sides differ by at most O(1/n), and thus

eA+B = lim
n→∞

(
e
A+B
n

)n
= lim

n→∞

(
eA/neB/n

)n
,

as required. �

Lemma 3.2.
(
eitV ψ0

)
(x) = eitV (x)ψ0(x).

�

Lemma 3.3.(
ei
t
2

∆ψ0

)
(x) = c

∫
dx′ei

(x−x′)2
2t ψ0(x′).

Proof. In fact, the left hand side of this equality is
just a solution ψ(t, x) of Schrödinger’s equation with
V = 0:

∂ψ

∂t
=
i

2
∆xψ, ψ|t=0 = ψ0.

Taking the Fourier transform ψ̃(t, p) =
1√
2π

∫
e−ipxψ(t, x)dx, we get the equation

∂ψ̃

∂t
= −ip

2

2
ψ̃, ψ̃|t=0 = ψ̃0.

For a fixed p, this is a simple first order linear dif-
ferential equation with respect to t, and thus,

ψ̃(t, p) = e−i
tp2

2 ψ̃0(p).

Taking the inverse Fourier transform, which takes
products to convolutions and Gaussians to other
Gaussians, we get what we wanted to prove. �
Lemma 3.4. With the notation of Section 2 and at
the specific case of V (x) = 1

2x
2 and T = π

2 , we have

xc(t) = x0 cos t+ xn sin t.

Proof. If xc is a critical point of L on Wx0xn , then for
any xq ∈W00 there should be no term in L(xc+εxq)
which is linear in ε. Now recall that

L(x) =

∫ T

0
dt

(
1

2
ẋ2(t)− V (x(t))

)
,

so using V (xc + εxq) ∼ V (xc) + εxqV
′(xc) we find

that the linear term in ε in L(xc + εxq) is
∫ T

0
dt
(
ẋcẋq − V ′(xc)xq

)
.

Integrating by parts and using xq(0) = xq(T ) = 0,
this becomes ∫ T

0
dt
(
−ẍc − V ′(xc)

)
xq.

For this integral to vanish independently of xq, we
must have −ẍc − V ′(xc) ≡ 0, or

ẍc = −V ′(xc).




This is the famous F = ma
of Newton’s, and we have just
rediscovered the principle of
least action!




In our particular case this boils down to the equation

ẍc = −xc, xc(0) = x0, xc(π/2) = xn,

whose unique solution is displayed in the statement
of this lemma. �
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