Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 1

Dror Bar-Natan in Regina, June 2012
http://www.math.toronto.edu/~drorbn/Talks/Regina-1206/
Abstract. The a priori expectation of first year elementary schoolAlexander Issues. students who were just introduced to the natural numbers, if they \bullet Quick to compute, but computation departs from topology. would be ready to verbalize it, must be that soon, perhaps by

- Extends to tangles, but at an exponential cost.
second grade, they'd master the theory and know all there is to
- Hard to categorify.
know about those numbers. But they would be wrong, for number Idea. Given a group G and two "YB"
anything there is out there in mathematics.
pairs $R^{ \pm}=\left(g_{o}^{ \pm}, g_{u}^{ \pm}\right) \in G^{2}$, map them I was a bit more sophisticated when I first heard of knot theory.to xings and "multiply along", so that
 My first thought was that it was either trivial or intractable, and most definitely, I wasn't going to learn it is interesting. But it is, and I was wrong, for the reader of knot theory is often lead to the most interesting and beautiful structures in topology, geometry, quantum field theory, and algebra.
Today I will talk about just one minor example, mostly having to do with the link to algebra: A straightforward proposal for a. group-theoretic invariant of knots fails if one really means groups, but works once generalized to meta-groups (to be defined). We will construct one complicated but elementary meta-group as a meta-bicrossed-product (to be defined), and explain how the resulting invariant is a not-yet-understood yet potentially significant generalization of the Alexander polynomial, while at the same time being a specialization of a somewhat-understood "universal finite type invariant of w-knots" and of an elusive "universal finite type invariant of v-knots".

$$
\xrightarrow{Z}\binom{g_{o}^{+} g_{u}^{+} g_{o}^{+} g_{u}^{-} g_{o}^{-} g_{u}^{+} g_{o}^{+} g_{u}^{+}}{g_{u}^{-} g_{o}^{-}}
$$

This Fails! R2 implies that $g_{o}^{ \pm} g_{o}^{\mp}=e=g_{u}^{ \pm} g_{u}^{\mp}$ and then R3 implies that g_{o}^{+}and g_{u}^{+}commute, so the result is a simple counting invariant.
A Group Computer. Given G, can store group elements and perform operations on them:

A Standard Alexander Formula. Label the arcs 1 through $(n+1)=1$, make an $n \times n$ matrix as below, delete one row and one column, and compute the determinant:

$-1+4 x-8 x^{2}+11 x^{3}-8 x^{4}+4 x^{5}-x^{6}$

Also has S_{x} for inversion, e_{x} for unit insertion, d_{x} for register deletion, $\Delta_{x y}^{z}$ for element cloning, ρ_{y}^{x} for renamings, and $\left(D_{1}, D_{2}\right) \mapsto$ $D_{1} \cup D_{2}$ for merging, and many obvious composition axioms relat
 ing those. $P=\left\{x: g_{1}, y: g_{2}\right\} \Rightarrow P=\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}$
A Meta-Group. Is a similar "computer", only its internal structure is unknown to us. Namely it is a collection of sets $\left\{G_{\gamma}\right\}$ indexed by all finite sets γ, and a collection of operations $m_{z}^{x y}, S_{x}, e_{x}, d_{x}, \Delta_{x y}^{z}$ (sometimes), ρ_{y}^{x}, and \cup, satisfying the exact same linear properties.
Example 1. The non-meta example, $G_{\gamma}:=G^{\gamma}$.
Example 2. $G_{\gamma}:=M_{\gamma \times \gamma}(\mathbb{Z})$, with simultaneous row and column operations, and "block diagonal" merges. Here if $P=\left(\begin{array}{lll}x: & a & b \\ y: & c & d\end{array}\right)$ then $d_{y} P=(x: a)$ and $d_{x} P=(y: d) \mathrm{so}$ $\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}=\left(\begin{array}{ccc}x: & a & 0 \\ y: & 0 & d\end{array}\right) \neq P$. So this G is truly meta. Claim. From a meta-group G and YB elements $R^{ \pm} \in G_{2}$ we can construct a knot/tangle invariant.
Bicrossed Products. If $G=H T$ is a group presented as a product of two of its subgroups, with $H \cap T=\{e\}$, then also $G=T H$ and G is determined by H, T, and the "swap" map $s w^{t h}:(t, h) \mapsto\left(h^{\prime}, t^{\prime}\right)$ defined by $t h=h^{\prime} t^{\prime}$. The map $s w$ satisfies (1) and (2) below; conversely, if $s w: T \times H \rightarrow H \times T$ satisfies (1) and (2) (+ lesser conditions), then (3) defines a group structure on $H \times T$, the "bicrossed product".

Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 2

A Meta-Bicrossed-Product is a collection of sets $\beta(\eta, \tau)$ and I mean business!

conditions). A meta-bicrossed-product defines a meta-group with $G_{\gamma}:=\beta(\gamma, \gamma)$ and $g m$ as in (3).
Example. Take $\beta(\eta, \tau)=M_{\tau \times \eta}(\mathbb{Z})$ with row operations for
the tails, column operations for the heads, and a trivial swap.
β Calculus. Let $\beta(\eta, \tau)$ be

$$
\left\{\begin{array}{c|ccc|l}
\omega & h_{1} & h_{2} & \cdots & h_{j} \in \eta, t_{i} \in \tau, \text { and } \omega \text { and } \\
\hline t_{1} & \alpha_{11} & \alpha_{12} & \cdot & h_{j} \\
t_{2} & \alpha_{21} & \alpha_{22} & \cdot & \text { the } \alpha_{i j} \text { are rational func- } \\
\vdots & \cdot & \cdot & \cdot & \text { tions in a variable } X
\end{array}\right\}
$$

$$
t m_{z}^{x y}: \begin{array}{c|ccc|c}
\omega & \ldots & & \omega \\
\hline t_{x} & \alpha \\
t_{y} & \beta & \mapsto & t_{z} & \alpha+\beta \\
\vdots & \gamma & & \vdots & \gamma
\end{array}
$$

$$
\begin{array}{c|c|c|c}
\omega_{1} & \eta_{1} \\
\hline \tau_{1} & \alpha_{1} & \omega_{2} & \eta_{2} \\
\hline & \tau_{2} & \alpha_{2} \\
& \omega_{1} \omega_{2} & \eta_{1} & \eta_{2} \\
\hline & \tau_{1} & \alpha_{1} & 0 \\
& \tau_{2} & 0 & \alpha_{2}
\end{array}
$$

$$
h m_{z}^{x y}: \begin{array}{c|ccc}
\omega & h_{x} & h_{y} & \cdots \\
\hline \vdots & \alpha & \beta & \gamma
\end{array} \mapsto \begin{array}{c|cc}
\omega & h_{z} & \cdots \\
\hline \vdots & \alpha+\beta+\langle\alpha\rangle \beta & \gamma
\end{array}
$$

$$
s w_{x y}^{t h}: \begin{array}{c|cc}
\omega & h_{y} & \cdots \\
\hline t_{x} & \alpha & \beta \\
\hline & \gamma & \delta
\end{array} \quad \begin{array}{c|cc}
\omega \epsilon & h_{y} & \cdots \\
\hline t_{x} & \alpha(1+\langle\gamma\rangle / \epsilon) & \beta(1+\langle\gamma\rangle / \epsilon) \\
& \vdots & \gamma / \epsilon \\
& \\
& \gamma-\gamma \beta / \epsilon
\end{array}
$$

where $\epsilon:=1+\alpha$ and $\langle c\rangle:=\sum_{i} c_{i}$, and let

$$
R_{x y}^{p}:=\begin{array}{c|cc}
1 & h_{x} & h_{y} \\
\hline t_{x} & 0 & X-1 \\
t_{y} & 0 & 0
\end{array} \quad R_{x y}^{m}:=\begin{array}{c|cc}
1 & h_{x} & h_{y} \\
\hline t_{x} & 0 & X^{-1}-1 \\
t_{y} & 0 & 0
\end{array}
$$

Theorem. Z^{β} is a tangle invariant (and more). Restricted to knots, the ω part is the Alexander polynomial. On braids, it is equivalent to the Burau representation. A variant for links contains the multivariable Alexander polynomial.
Why Happy? • Applications to w-knots.

- Everything that I know about the Alexander polynomial can be expressed cleanly in this language (even if without proof), except HF, but including genus, ribbonness, cabling, v-knots, knotted graphs, etc., and there's potential for vast generalizations.
- The least wasteful "Alexander for tangles" I'm aware of.
- Every step along the computation is the invariant of some thing.
- Fits on one sheet, including implementation \& propaganda.

A Partial To Do List. 1. Where does it more simply come from?
2. Remove all the denominators.
ts $=$ Union [Cases $\left[\mathrm{B}[\omega, \Lambda], \mathrm{t}_{s_{-}}: \rightarrow s\right.$, Infinity]];
hs = Union[Cases [$\mathrm{B}[\omega, \Lambda], \mathrm{h}_{s_{-}} \Rightarrow s$, Infinity]];
$\mathrm{M}=\operatorname{Outer}\left[\beta\right.$ Simp [Coefficient $\left.\left.\left[\Lambda, \mathrm{h}_{\neq 1} \mathrm{t}_{ \pm 2}\right]\right] \&, h s, \mathrm{ts}\right]$;
PrependTo $\left[M, t_{\#} \& / @ t s\right] ;$
$M=\operatorname{Prepend}\left[T r a n s p o s e[M], ~ P r e p e n d\left[h_{\#} \& / @ \mathrm{hs}, \omega\right]\right]$;
$] ; \mathrm{gm}_{x y} \rightarrow[\beta]:=\beta$ MatrixForm [M]] ;
$\rightarrow z[\beta]:=\beta / / \mathbf{s w}_{X Y} / / \mathrm{hm}_{x y \rightarrow z} / / \operatorname{tm}_{x y \rightarrow z}$
в $/: \mathrm{B}\left[\omega 1_{-}, \Delta 1 _\right] \mathrm{B}[\omega 2, \Lambda 2]:=\mathrm{B}[\omega 1 * \omega 2, \Delta 1+\Lambda 2]$

$\mathrm{Rm}_{\mathrm{x}_{-} y_{-}}:=\mathrm{B}\left[1,\left(\mathrm{x}^{-1}-1\right) \mathrm{t}_{\mathrm{x}} \mathrm{h}_{y}\right]$;

$\left\{\beta=\mathrm{B}\left[\omega, \operatorname{Sum}\left[\alpha_{10}{ }_{i+j} \mathrm{t}_{\mathrm{i}} \mathrm{h}_{\mathrm{j}},\{\mathrm{i},\{1,2,3\}\},\{j,\{4,5\}\}\right]\right]\right.$, $\left.\left(\beta / / \mathrm{tm}_{12 \rightarrow 1} / / \mathbf{s w}_{14}\right)=\left(\beta / / \mathrm{sw}_{24} / / \mathrm{sw}_{14} / / \mathrm{tm}_{12 \rightarrow 1}\right)\right\} \square$

($\begin{aligned} & \left\{\mathrm{Rm}_{51} \mathrm{Rm}_{62} \mathrm{Rp}_{34} / / \mathrm{gm}_{14 \rightarrow 1} / / \mathrm{gm}_{25 \rightarrow 2} / / \mathrm{gm}_{36 \rightarrow 3}\right.\end{aligned}$
$\mathrm{Rp}_{61} \mathrm{Rm}_{24} \mathrm{Rm}_{35} / / \mathrm{gm}_{14 \rightarrow 1} / / \mathrm{gm}_{25 \rightarrow 2} / / \mathrm{gm}_{36}$

$\left(\begin{array}{ccccccccc}1 & h_{1} & h_{3} & h_{5} & h_{7} & h_{9} & h_{11} & h_{13} & h_{15} \\ t_{2} & 0 & 0 & 0 & -\frac{-1+x}{x} & 0 & 0 & 0 & 0 \\ t_{4} & 0 & 0 & 0 & 0 & 0 & -\frac{-1+x}{x} & 0 & 0 \\ t_{6} & 0 & 0 & 0 & 0 & 0 & 0 & -1+X & 0 \\ t_{8} & 0 & -\frac{-1+x}{x} & 0 & 0 & 0 & 0 & 0 & 0 \\ t_{10} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1+X \\ t_{12} & -\frac{-1+X}{x} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ t_{14} & 0 & 0 & 0 & 0 & -1+X & 0 & 0 & 0 \\ t_{16} & 0 & 0 & -1+X & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\left.\overline{\mathrm{Do}} \mathrm{L} \mathrm{\beta}^{2}=\beta / / \mathrm{gm}_{1 \mathrm{k} \rightarrow 1},\{\mathrm{k}, 2,10\}\right] ; \beta \square 8_{17}$, cont.
$\left(\begin{array}{ccccc}\frac{1}{x} & h_{1} & h_{11} & h_{13} & h_{15} \\ t_{1} & -\frac{(-1+X)(1+X)}{x} & -(-1+X)\left(1-X+X^{2}\right) & (-1+X)\left(1-X+X^{2}\right) & -1+X \\ t_{12} & -\frac{-1+x}{x} & 0 & 0 & 0 \\ t_{14} & -1+X & \frac{(-1+X)^{2}\left(1-x+x^{2}\right)}{x} & -\frac{(-1+X)^{2}\left(1-x+x^{2}\right)}{x} & 0 \\ t_{16} & \frac{-1+x}{x} & (-1+X)^{2} & -\frac{(-1+X)^{3}}{x} & 0\end{array}\right)$

Do $\left[\beta=\beta / / \operatorname{gm}_{1 \mathrm{k} \rightarrow 1},\{\mathbf{k}, 11,16\}\right] ; \beta$
$\left(-\frac{1-4 x+8 x^{2}-11 x^{3}+8 x^{4}-4 x^{5}+x^{6}}{x^{3}}\right)$

3. How do determinants arise in this context?
4. Understand links.
5. Find the "reality condition".
6. Do some "Algebraic Knot Theory".
7. Categorify.
8. Do the same in other natural quotients of the v/w-story.

Banks like knots. Which knot appears trice?

Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 3

Where does it come from? The accidental ${ }^{1}$ answer is that it is a symbolic calculus for a natural reduction ${ }^{4}$ of the unique homomorphic expansion ${ }^{2}$ of w-tangles ${ }^{3}$.

1. "Accidental" for it's only how I came about it. There ought to be a better answer.
2. A "homomorphic expansion", aka as a homomorphic universal finite type invariant, is a completely canonical construct whose presence implies that the objects in questions are susceptible to study using graded algebra.
3. "v-Tangles" are the meta-group generated by crossingsAlexander [Knot[8, 17]][x] // Factor \square modulo Reidemeister moves. "w-Tangles" are a natural quotient of v-tangles. They are at least related and perhaps identical to a certain class of $1 \mathrm{D} / 2 \mathrm{D}$ knots in 4 D .
4. To "only what is visible by the 2D Lie algebra".
$-\frac{1-4 x+8 x^{2}-11 x^{3}+8 x^{4}-4 x^{5}+x^{6}}{x^{3}}$
A certain generalization will arise by not reducing as in 4. A vast generalization may arise when homomorphic expansions for v-tangles are understood, a task likely equivalent to the Etingof-Kazhdan quantization of Lie bialgebras.

The key trick: | ω | h_{j} |
| :--- | :--- |
| t_{i} | $\alpha_{i j}$ |$\longleftrightarrow B\left(\omega, \Lambda=\sum_{i, j} \alpha_{i j} t_{i} h_{j}\right)$.

