Facts and Dreams About v–Knots and Etingof–Kazhdan, 1

http://www.math.toronto.edu/~drorbn/Talks/Strasbourg-1109/

Dror Bar–Natan, Strasbourg 2011

Abstract. I will describe, to the best of my understanding, the Example 1. relationship between virtual knots and the Etingof-Kazhdan [EK] quantization of Lie bialgebras, and explain why, IMHO, both topologists and algebraists should care. I am not happy yet about the state of my understanding of the subject but I haven't lost hope of achieving happiness, one day.

This is an overview with too many and not enough details. I apologize.

Abstract Generalities. (K, I): an algebra and an "augmentation ideal" in it. $\hat{K} := \lim K/I^m$ the "I-adic completion". $\operatorname{gr}_I K := \widehat{\bigoplus} I^m / I^{m+1}$ has a product μ , especially, μ_{11} : $(C = I/I^2)^{\otimes 2} \rightarrow$ I^2/I^3 . The "quadratic approximation" $\mathcal{A}_I(K) :=$ $\widehat{FC}/\langle \ker \mu_{11} \rangle$ of K surjects using μ on gr K.

The Prized Object. A "homomorphic A-expansion": a homomorphic filterred $Z: K \to \mathcal{A}$ for which $\operatorname{gr} Z: \operatorname{gr} K \to \mathcal{A}|Z:$ universal finite type invariant, the Kontsevich integral. inverts μ .

Dror's Dream. All interesting graded objects and equations especially those around quantum groups, arise this way.

Example 2. For $K = \mathbb{Q}PvB_n =$ "braids when you look", [Lee] shows that a non-homomorphic Z exists. [BEER]: there is no homomorphic one.

General Algebraic Structures¹.

- Has kinds, elements, operations, and maybe constants.
- Must have "the free structure over some generators".
- 14 works! • We always allow formal linear combinations.

Example 3. Quandle: a set K with an op \wedge s.t.

$$1 \wedge x = 1, \quad x \wedge 1 = x = x \wedge x, \quad \text{(appetizers)}$$
$$(x \wedge y) \wedge z = (x \wedge z) \wedge (y \wedge z). \quad \text{(main)}$$

 $\mathcal{A}(K)$ is a graded Leibniz² algebra: Roughly, set $\bar{v}:=(v-1)$ (these generate I!), feed $1 + \bar{x}$, $1 + \bar{y}$, $1 + \bar{z}$ in (main), collect the surviving terms of lowest degree:

$$(\bar{x} \wedge \bar{y}) \wedge \bar{z} = (\bar{x} \wedge \bar{z}) \wedge \bar{y} + \bar{x} \wedge (\bar{y} \wedge \bar{z}).$$

Example 4. Parenthesized braids make a category with some extra operations. An expansion is the same thing as an A_n associator, and the Grothendieck-Teichmüller story³ arises satisfying the "pentagon", naturally.

K =

 $(K/I^{m+1})^* = (\text{invariants of type } m) =: \mathcal{V}_m$

$$(I^m/I^{m+1})^* = \mathcal{V}_m/\mathcal{V}_{m-1} \quad C = \langle t^{ij} | t^{ij} = t^{ji} \rangle = \langle | \mid - \mid - \rangle$$

$$\ker \mu_{11} = \langle [t^{ij}, t^{kl}] = 0 = [t^{ij}, t^{ik} + t^{jk}] \rangle = \langle 4T \text{ relations} \rangle$$

$$A = A_n = \begin{pmatrix} \text{horizontal chord dia-} \\ \text{grams mod 4T} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} / 4T$$

Why Prized? Sizes K and shows it "as big" as A; reduces "topological" questions to quadratic algebra questions; gives life and meaning to questions in graded algebra; universalizes those more than "universal enveloping algebras" and allows for richer quotients.

Operations.

still

KTG is generated by ribbon twists and the Presentation. tetrahedron \triangle , modulo the relation(s):

(+more)

Claim. With $\Phi := Z(\triangle)$, the above relation becomes equivalent to the Drinfel'd's pentagon of the theory of quasi-Hopf algebras. 15 A $\mathcal{U}(\mathfrak{q})$ -Associator:

$$:= \Phi \in \mathcal{A}(\uparrow_3)$$

$$((AB)C)D \longrightarrow (AB)(CD)$$

 $(AB)C \xrightarrow{\Phi \in \mathcal{U}(\mathfrak{g})^{\otimes 3}} A(BC)$

(A(BC))DA(B(CD))A((BC)D)

 $\Phi 1 \cdot (1\Delta 1)\Phi \cdot 1\Phi = (\Delta 11)\Phi \cdot (11\Delta)\Phi$

Footnotes

- 1. I probably mean "a functor from some fixed "structure multi-category" to the multi-category of sets, extended to formal linear combinations".
- 2. A Leibniz algebra is a Lie algebra minus the anti-symmetry of the bracket; I have previously erroneously asserted that here $\mathcal{A}(K)$ is Lie; however see the comment by Conant attached to this talk's video page.
- 3. See my paper [BN1] and my talk/handout/video [BN3].
- 4. See [BN5] and my talk/handout/video [BN4].
- 5. Not so old and not quite written up. Yet see [BN2].

References

- [AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv:0802.4300.
- [AET] A. Alekseev, B. Enriquez, and C. Torossian, *Drinfeld associators, Braid groups and explicit solutions of the Kashiwara Vergne equations*, Pub. Math. de L'IHES **112-1** (2010) 143–189, arXiv:arXiv:0903.4067.
- [BEER] L. Bartholdi, B. Enriquez, P. Etingof, and E. Rains, Groups and Lie algebras corresponding to the YangBaxter equations, Jornal of Algebra 305-2 (2006) 742-764, arXiv:math.RA/0509661.
- [BN1] D. Bar-Natan, On Associators and the Grothendieck-Teichmüller Group I, Selecta Mathematica, New Series 4 (1998) 183–212.
- [BN2] D. Bar-Natan, Algebraic Knot Theory A Call for Action, web document, 2006, http://www.math.toronto.edu/~drorbn/papers/AKT-CFA.html.
- [BN3] D. Bar-Natan, Braids and the Grothendieck-Teichmüller Group, talk given in Toronto on January 10, 2011, http://www.math.toronto.edu/~drorbn/Talks/Toronto-110110/.
- [BN4] D. Bar-Natan, From the ax + b Lie Algebra to the Alexander Polynomial and Beyond, talk given in Chicago on September 11, 2010, http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/.
- [BN5] D. Bar-Natan, Finite Type Invariants of w-Knotted Objects: From Alexander to Kashiwara and Vergne, in preparation, online at http://www.math.toronto.edu/~drorbn/papers/WKO/.
- [Dr1,2] V. G. Drinfel'd, Quasi-Hopf Algebras, Leningrad Math. J. 1 (1990) 1419–1457 and On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected with $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, Leningrad Math. J. 2 (1991) 829–860.
- [EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New Series 2 (1996) 1–41, arXiv:q-alg/9506005.
- [Ha] A. Haviv, Towards a diagrammatic analogue of the Reshetikhin-Turaev link invariants, Hebrew University PhD thesis, September 2002, arXiv:math.QA/0211031.
- [KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions, Invent. Math. 47 (1978) 249–272.
- [Lee] P. Lee, The Pure Virtual Braid Group is Quadratic, in preparation.
- [Po] M. Polyak, On the Algebra of Arrow Diagrams, Let. Math. Phys. 51 (2000) 275–291.
- [Th] D. P. Thurston, The Algebra of Knotted Trivalent Graphs and Turaev's Shadow World, Geometry & Topology Monographs 4 (2002) 337-362, arXiv:math.GT/0311458.

Plan

- 1. (8 minutes) The Peter Lee setup for (K, I), "all interesting graded equations arise in this way".
- 2. (3 minutes) Example: the pure braid group (mention PvB, too).
- 3. (3 minutes) Generalized algebraic structures.
- 4. (1 minute) Example: quandles.
- 5. (4 minutes) Example: parenthesized braids and horizontal associators.
- 6. (6 minutes) Example: KTGs and non-horizontal associators. ("Bracket rise" arises here).
- 7. (8 minutes) Example: wKO's and the Kashiwara-Vergne equations.
- 8. (12 minutes) vKO's, bi-algebras, E-K, what would it mean to find an expansion, why I care (stronger invariant, more interesting quotients).
- 9. (5 minutes) wKO's, uKO's, and Alekseev-Enriquez-Torossian.