Abstract．I will describe，to the best of my understanding，the relationship between virtual knots and the Etingof－Kazhdan EK quantization of Lie bialgebras，and explain why，IMHO， both topologists and algebraists should care．I am not happy yet about the state of my understanding of the subject but I haven＇t lost hope of achieving happiness，one day．

Abstract Generalities．(K, I) ：an algebra and an ＂augmentation ideal＂in it．$\hat{K}:=\lim _{幺} K / I^{m}$ the ＂I－adic completion＂． $\operatorname{gr}_{I} K:=\widehat{\bigoplus} I^{m} / I^{m+1}$ has a product μ ，especially，$\mu_{11}:\left(C=I / I^{2}\right)^{\otimes 2} \rightarrow$ I^{2} / I^{3} ．The＂quadratic approximation＂ $\mathcal{A}_{I}(K):=$ $\widehat{F C} /\left\langle\operatorname{ker} \mu_{11}\right\rangle$ of K surjects using μ on gr K ．
 The Prized Object．A＂homomorphic \mathcal{A}－expansion＂：a ho－ momorphic filterred $Z: K \rightarrow \mathcal{A}$ for which $\operatorname{gr} Z: \operatorname{gr} K \rightarrow \mathcal{A}$ inverts μ ．
Dror＇s Dream．All interesting graded objects and equations， especially those around quantum groups，arise this way．
Example 2．For $K=\mathbb{Q} P v B_{n}=$ ＂braids when you look＂，Lee shows that a non－homomorphic Z exists．BEER］：there is no homomorphic one．
General Algebraic Structure ${ }^{[1]}$ ．

－Has kinds，elements，operations，and maybe constants．
－Must have＂the free structure over some generators＂．
－We always allow formal linear combinations．
14 still
Example 3．Quandle：a set K with an op \wedge s．t．

$$
\begin{aligned}
& 1 \wedge x=1, \quad x \wedge 1=x=x \wedge x, \quad \text { (appetizers) } \\
& \quad(x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z) . \quad(\text { main })
\end{aligned}
$$

$$
\begin{aligned}
& \text { a graded Leibniz } z^{20} \text { algebra: Roughly, set } \bar{v}:=(v-1) \\
& \text { nerate } I!\text {), feed } 1+\bar{x}, 1+\bar{y}, 1+\bar{z} \text { in (main), collect }
\end{aligned}
$$

$\mathcal{A}(K)$ is a graded Leibniz ${ }^{2}$ algebra：Roughly，set $\bar{v}:=(v-1)$ （these generate $I!$ ），feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in（main），collect the surviving terms of lowest degree：

$$
\begin{equation*}
(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z}) \tag{15}
\end{equation*}
$$

Example 4．Parenthesized braids make a category with some extra operations．An expansion is the same thing as an $A_{n}-$ associator，and the Grothendieck－Teichmüller story ${ }^{[3]}$ arises

$\left(K / I^{m+1}\right)^{\star}=($ invariants of type $m)=: \mathcal{V}_{m}$

$$
\left(I^{m} / I^{m+1}\right)^{\star}=\mathcal{V}_{m} / \mathcal{V}_{m-1} \quad C=\left\langle t^{i j} \mid t^{i j}=t^{j i}\right\rangle=\langle\mid H\rangle
$$

$\operatorname{ker} \mu_{11}=\left\langle\left[t^{i j}, t^{k l}\right]=0=\left[t^{i j}, t^{i k}+t^{j k}\right]\right\rangle=\langle 4 \mathrm{~T}$ relations \rangle
$\mathcal{A}=A_{n}=\binom{$ horizontal chord dia－}{ grams mod 4T }$=\binom{\square}{\square} / 4 \mathrm{~T}$ Z ：universal finite type invariant，the Kontsevich integral． Why Prized？Sizes K and shows it＂as big＂as \mathcal{A} ；reduces ＂topological＂questions to quadratic algebra questions；gives ${ }^{5}$ life and meaning to questions in graded algebra；universalizes those more than＂universal enveloping algebras＂and allows for richer quotients．

Presentation．KTG is generated by ribbon twists and the tetrahedron Δ ，modulo the relation（s）：

Claim．With $\Phi:=Z(\Delta)$ ，the above relation becomes equiva－ lent to the Drinfel＇d＇s pentagon of the theory of quasi－Hopf algebras． A $\mathcal{U}(\mathfrak{g})$－Associator：

$$
((A B) C) D \longrightarrow(A B)(C D)
$$

$$
(A B) C \xrightarrow{\Phi \in \mathcal{U}(\mathfrak{g})^{\otimes 3}} A(B C)
$$ satisfying the＂pentagon＂，

$$
\Phi 1 \cdot(1 \Delta 1) \Phi \cdot 1 \Phi=(\Delta 11) \Phi \cdot(11 \Delta) \Phi
$$

$\mathcal{A}\left(\uparrow_{2}\right):=\langle\underbrace{\left.()_{\mathrm{AS}}\right)}_{\left(\operatorname{deg}=\frac{1}{2} \#\{\text { trivalent vertices }\}\right)} \underset{\substack{\text { Given a }}}{\substack{\operatorname{metrized} \mathfrak{g} \\ \mathfrak{g}=\left\langle X_{a}\right\rangle}} \mathcal{U}(\mathfrak{g})^{\otimes 2}$
$\sum_{a, b, c, d, e, f=1}^{\operatorname{dim} \mathfrak{g}} f_{a b c} f_{d c e} X_{a} X_{d} X_{f} \otimes X_{b} X_{f} X_{e}$

The w－relations include R234，VR1234，D，Overcrossings Commute

Trivalent w－Tangles．
$\mathrm{wTT}=\mathrm{PA}\left\langle\begin{array}{c|c|c}\mathrm{w}- & \begin{array}{c}\mathrm{w}- \\ \text { generators }\end{array} & \begin{array}{c}\text { unary w－} \\ \text { relations } \\ \text { operations }\end{array}\end{array}\right\rangle=\mathrm{CA}\left\langle\begin{array}{c}\text { same } \\ \mathrm{w} / \mathrm{o} \times\end{array}\right\rangle$
Theorem．There exists a homomorphic expansion Z for wTT．In particular，Z respects $R 4$ and intertwines annulus and disk unzips：

$V \cdot(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\mathcal{A}^{w}\left(\uparrow_{3}\right)$

 $\Delta(\omega)=\omega \otimes \omega$ in $\mathcal{A}^{w}\left(\oplus_{2}\right)$
$V \cdot \Delta(\omega)=\omega \otimes \omega$ in $\mathcal{A}^{w}\left(\boldsymbol{१}_{2}\right)$ Kashiwara－Vergne－Alekseev－Enriquez－Torrosian Alekseev－Torossian AT（equivalent to Kashiwara－Vergne KV］） There are elements $F \in \mathrm{TAut}_{2}$ and $a \in \mathfrak{t r}_{1}$ such that
$F(x+y)=\log e^{x} e^{y} \quad$ and $\quad j F=a(x)+a(y)-a\left(\log e^{x} e^{y}\right) .{ }^{3}$
Theorem．That＇s equivalent to a homomorphic expansion for wTT The Main Example．

The Polyak－Ohtsuki Description of \mathcal{A}^{v}［Po．
$\mathcal{A}^{v} \simeq$

\mathcal{A}^{v} pairs with Lie bialgebras．Let \mathfrak{g}_{+}be a Lie bialgebra with basis X_{a} ，bracket $[\cdot, \cdot]$ ，cobracket δ ，dual $\mathfrak{g}_{-}=\mathfrak{g}_{+}^{\star}$ ，dual basis X^{a} for \mathfrak{g}_{-} double $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{g}_{-}$，structure constants $\left[X_{a}, X_{b}\right]=\sum b_{a b}^{c} X_{c}$ and co－structure constants $\delta\left(X_{a}\right)=\sum c_{a}^{b c} X_{b} \otimes X_{c}$ ．Then

Forbidden Theorem EK Hal ？．There exists a homo－ morphic expansion Z for vTT．
Why Forbidden（to me）？
－Minor statement details may be off．
－No fully written proof．
－I don＇t understand the proof．
－There isn＇t yet a knot－theoretic view of the proof，like there is in the w－case．
Why Should We Care？

Etingof
－A gateway into the forbidden territory of＂quantum groups＂．
－Abstractly more pleasing：We study the things，and not just their representations．
－ \mathcal{A}^{v} is sometimes easier than \mathcal{A}^{u} ：Alexander，say，arises easily from the 2D Lie algebra ${ }^{4}$ ．
－Potentially， \mathcal{A}^{v} has many more＂internal quotients＂than there are Lie bialgebras．What are they and what are the corresponding theories？
－My old ${ }^{5}$ Algebraic Knot Theory dream：

$\underset{\text { delete }}{\leftarrow}$

$\overrightarrow{\text { unzip }}$

$V \rightarrow \Phi^{\text {1－loop }}$ after AT．
＂cut and cap＂is well－defined（！）on \mathcal{K}^{u}

Basic：

Better：

$\Phi \rightarrow V$ after AET．In $\mathcal{K}^{\bar{w}}$ allow tubes and strands and tube－ strand vertices，allow＂punctures＂，yet allow no＂tangles＂．

\bar{T}－$\overline{\text { generators }} \overline{\text { of }} \overline{\mathcal{K}} \mathcal{K}^{\bar{w}} \overline{\text { can }} \overline{\text { be }} \overline{\text { written }} \overline{\text { in }} \overline{\text { terms }} \overline{\text { of }} \overline{\text { the }}$ generators \bar{o} ． \mathcal{K}^{u}（i．e．，given Φ ，can write a formula for V ）．With T any classica tangle，esp．\square or \square ，consider the＂sled＂

9 Alexander is easy！

Footnotes

1. I probably mean "a functor from some fixed "structure multi-category" to the multi-category of sets, extended to formal linear combinations".
2. A Leibniz algbera is a Lie algebra minus the anti-symmetry of the bracket; I have previously erroneously asserted that here $\mathcal{A}(K)$ is Lie; however see the comment by Conant attached to this talk's video page.
3. See my paper BN1 and my talk/handout/video BN3].
4. See [BN5] and my talk/handout/video [BN4].
5. Not so old and not quite written up. Yet see BN2.

References

[AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv:0802.4300
[AET] A. Alekseev, B. Enriquez, and C. Torossian, Drinfeld associators, Braid groups and explicit solutions of the KashiwaraVergne equations, Pub. Math. de L'IHES 112-1 (2010) 143-189, arXiv:arXiv:0903.4067.
[BEER] L. Bartholdi, B. Enriquez, P. Etingof, and E. Rains, Groups and Lie algebras corresponding to the YangBaxter equations, Jornal of Algebra 305-2 (2006) 742-764, arXiv:math.RA/0509661
[BN1] D. Bar-Natan, On Associators and the Grothendieck-Teichmüller Group I, Selecta Mathematica, New Series 4 (1998) 183-212.
[BN2] D. Bar-Natan, Algebraic Knot Theory - A Call for Action, web document, 2006, http://www.math.toronto.edu/~drorbn/papers/AKT-CFA.html
[BN3] D. Bar-Natan, Braids and the Grothendieck-Teichmüller Group, talk given in Toronto on January 10, 2011, http://www.math.toronto.edu/~drorbn/Talks/Toronto-110110/
[BN4] D. Bar-Natan, From the $a x+b$ Lie Algebra to the Alexander Polynomial and Beyond, talk given in Chicago on September 11, 2010, http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/
[BN5] D. Bar-Natan, Finite Type Invariants of w-Knotted Objects: From Alexander to Kashiwara and Vergne, in preparation, online at http://www.math.toronto.edu/~drorbn/papers/WKO/
[Dr1,2] V. G. Drinfel'd, Quasi-Hopf Algebras, Leningrad Math. J. 1 (1990) 1419-1457 and On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected with Gal($\overline{\mathbb{Q}} / \mathbb{Q})$, Leningrad Math. J. 2 (1991) 829-860.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New Series 2 (1996) 1-41, arXiv:q-alg/9506005
[Ha] A. Haviv, Towards a diagrammatic analogue of the Reshetikhin-Turaev link invariants, Hebrew University PhD thesis, September 2002, arXiv:math.QA/0211031
[KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions, Invent. Math. 47 (1978) 249-272.
[Lee] P. Lee, The Pure Virtual Braid Group is Quadratic, in preparation.
[Po] M. Polyak, On the Algebra of Arrow Diagrams, Let. Math. Phys. 51 (2000) 275-291.
[Th] D. P. Thurston, The Algebra of Knotted Trivalent Graphs and Turaev's Shadow World, Geometry \& Topology Monographs 4 (2002) 337-362, arXiv:math.GT/0311458

Plan

1. (8 minutes) The Peter Lee setup for (K, I), "all interesting graded equations arise in this way".
2. (3 minutes) Example: the pure braid group (mention $P v B$, too).
3. (3 minutes) Generalized algebraic structures.
4. (1 minute) Example: quandles.
5. (4 minutes) Example: parenthesized braids and horizontal associators.
6. (6 minutes) Example: KTGs and non-horizontal associators. ("Bracket rise" arises here).
7. (8 minutes) Example: wKO's and the Kashiwara-Vergne equations.
8. (12 minutes) vKO's, bi-algebras, E-K, what would it mean to find an expansion, why I care (stronger invariant, more interesting quotients).
9. (5 minutes) wKO's, uKO's, and Alekseev-Enriquez-Torossian.
