Convolutions statement (Kashiwara-Vergne). Convolutions of The Orbit Method. invariant functions on a Lie group agree with convolutions Fourier analysis, the characters of invariant functions on its Lie algebra. More accurately, of $\left(\operatorname{Fun}(\mathfrak{g})^{G}, \star\right)$ correspond to let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie coadjoint orbits in \mathfrak{g}^{*}. By avalgebra, let $j: \mathfrak{g} \rightarrow \mathbb{R}$ be the Jacobian of the exponential eraging representation matrices map $\exp : \mathfrak{g} \rightarrow G$, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given and using Schur's lemma to reby $\Phi(f)(x):=j^{1 / 2}(x) f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then

$$
\Phi(f) \star \Phi(g)=\Phi(f \star g)
$$

Group-Ring statement. There exists $\omega^{2} \in \operatorname{Fun}(\mathfrak{g})^{G}$ so that for every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathfrak{g})$:
(shhh, $\omega^{2}=j^{1 / 2}$)

$$
\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x+y}^{2} e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} .
$$

Unitary statement. There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^{G}$ and an (infinite order) tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times\right.$ \mathfrak{g}_{y}) so that
(1) $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathfrak{g})$-valued functions)
(2) $V V^{*}=I$
(3) $V \omega_{x+y}=\omega_{x} \omega_{y}$

Algebraic statement. With $I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}$, with $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow$ $\hat{\mathcal{U}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ the obvious projection, with S the antipode of $\hat{\mathcal{U}}(I \mathfrak{g})$, with W the automorphism of $\hat{\mathcal{U}}(I \mathfrak{g})$ induced by flipping the sign of \mathfrak{g}^{*}, with $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ and $V \in \hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that
(1) $V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$
(2) $V \cdot S W V=1$
(3) $(c \otimes c)(V \Delta(\omega))=\omega \otimes \omega$

Diagrammatic statement. Let $R=\exp \hat{\uparrow} \uparrow \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that

Knot-Theoretic statement. There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:
(1)

\checkmark

(2)

(3)

Disclaimer: Rough edges remain!

Convolutions The Orbit $\underset{\substack{\hat{1} \\ \underset{r}{\text { statement }} \\<->}}{ }$ Method
Group-Ring Subject statement flow chart to every irreducible representation of G we can assign a character of $\left(\operatorname{Fun}(G)^{G}, \star\right)$.

$$
\begin{gathered}
\text { Unitary } \\
\text { statement }
\end{gathered}
$$

Kashiwara

Measure theoretic statement. Ignoring all ω 's, there exists a measure preserving and orbit preserving transformation T $\mathfrak{g}_{x} \times \mathfrak{g}_{y} \rightarrow \mathfrak{g}_{x} \times \mathfrak{g}_{y}$ for which $e^{x+y} \circ T=e^{x} e^{y}$.
Free Lie statement (Kashiwara-Vergne). There exist convergent Lie series F and G so that

$$
x+y-\log e^{y} e^{x}=\left(1-e^{-\operatorname{ad} x}\right) F+\left(e^{\operatorname{ad} y}-1\right) G
$$

$\operatorname{tr}(\operatorname{ad} x) \partial_{x} F+\operatorname{tr}(\operatorname{ad} y) \partial_{y} G=$

$$
\frac{1}{2} \operatorname{tr}\left(\frac{\operatorname{ad} x}{e^{\operatorname{ad} x}-1}+\frac{\operatorname{ad} y}{e^{\operatorname{ad} y}-1}-\frac{\operatorname{ad} z}{e^{\operatorname{ad} z}-1}-1\right)
$$

Alekseev-Torossian statement. There is an
 element $F \in \mathrm{TAut}_{2}$ with

$$
F(x+y)=\log e^{x} e^{y}
$$

and $j(F) \in \operatorname{im} \tilde{\delta} \subset \operatorname{tr}_{2}$, where for $a \in \operatorname{tr}_{1}$,
Alekseev $\tilde{\delta}(a):=a(x)+a(y)-a\left(\log e^{x} e^{y}\right)$.

Convolutions and Group Rings (ignoring all Jacobians). If G is finite, $(\operatorname{Fun}(G), \star) \cong(\mathbb{R} G, \cdot)$ via $T: f \mapsto \sum f(a) \tau(a)$. For Lie \mathfrak{g} and G,
 with $T \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $T \Phi^{-1} \psi=\int \psi(x) e^{x} \in$ $\hat{\mathcal{U}}(\mathfrak{g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and $\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g}): \quad$ (shhh, T is a "Fourier transform") \star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y} \quad \star$ in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$ Unitary \Longrightarrow Group-Ring. $\iint \omega_{x+y}^{2} e^{x+y} \phi(x) \psi(y)$
$=\left\langle\omega_{x+y}, \omega_{x+y} e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V \omega_{x+y}, V e^{x+y} \phi(x) \psi(y) \omega_{x+y}\right\rangle$ $=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} V \phi(x) \psi(y) \omega_{x+y}\right\rangle=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} \phi(x) \psi(y) \omega_{x} \omega_{y}\right\rangle$ $=\iint \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} \phi(x) \psi(y)$.
Unitary \Longleftrightarrow Algebraic. The key is to interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differential operators on $\operatorname{Fun}(\mathfrak{g})$:

- $\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator.
- $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of $\operatorname{ad} x:(x \varphi)(y):=\varphi([x, y])$.
- c is now "the constant term".

Δ acts by double and sum, S by reverse and negate.
What are w-Trivalent Tangles?
 $\left\{\begin{array}{c}\text { trivalent } \\ \text { tangles }\end{array}\right\}=P A\langle, \backslash, \lambda| R 23, R 4: \lambda=\lambda=$
$\mathrm{wTT}=$

$$
\left\{\begin{array}{c}
\text { trivalent } \\
\mathrm{w}-\text { tangles }
\end{array}\right\}=P A\left\langle\begin{array}{c|c|c}
\mathrm{w}- \\
\text { generators }
\end{array}\right| \begin{gathered}
\mathrm{w}- \\
\text { relations }
\end{gathered}\left|\begin{array}{c}
\text { unary w- } \\
\text { operations }
\end{array}\right\rangle
$$

The w-realations include R234, VR1234, M, Overcrossings Commute (OC) but not UC, $W^{2}=1$, and funny interactions between the wen and the cap and over- and under-crossings:

The unary w-operations.

A Ribbon 2-Knot is a surface S embed- Dimensional reduction ded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$, modulo isotopies of S alone.

Example.

Diagrammatic to Algebraic. With $\left(x_{i}\right)$ and $\left(\varphi^{J}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

From wTT to $\mathcal{A}^{w} \cdot \mathrm{gr}_{m}$ wTT $:=\{m$-cubes $\} /\{(m+1)$-cubes $\}:$

Homomorphic expansions for a filtered algebraic structure \mathcal{K} :

$$
\begin{gathered}
\underset{\mathrm{ops}}{\mathcal{K}}=\mathcal{K}_{0} \quad \supset \quad \mathcal{K}_{1} \quad \supset \quad \begin{array}{l}
\mathcal{K}_{2} \\
\Downarrow \\
\downarrow Z
\end{array} \quad \supset \quad \mathcal{K}_{3} \quad \supset \ldots \\
\end{gathered}
$$

ops $\odot \operatorname{gr} \mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$ An expansion is a filtration respecting $Z: \mathcal{K} \rightarrow \operatorname{gr} \mathcal{K}$ that "covers" the identity on $\mathrm{gr} \mathcal{K}$. A homomorphic expansion is an expansion that respects all relevant "extra" operations.

Our case(s).

$\mathcal{K} \xrightarrow[\begin{array}{c}\text { solving finitely many } \\ \text { equations in finitely } \\ \text { many unknowns }\end{array}]{Z: \text { gr igh algebra }} \mathcal{\text { gr }}: \overline{\mathcal{K}} \xrightarrow[\begin{array}{l}\text { low algebra: pic- } \\ \text { tures } \\ \text { represent } \\ \text { formulas }\end{array}]{\substack{\text { given a } \\ \text { algebr } \mathfrak{g}}}$ " $\mathcal{U}(\mathfrak{g})$ "
\mathcal{K} is knot theory or topology; gr \mathcal{K} is finite combinatorics: bounded-complexity diagrams modulo simple relations.
But we have (at least) three knot theories, $u \rightarrow v \rightarrow w$, and thus their "high algebras" are related!
Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let \mathcal{K}_{1} be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products").
We skipped... • The Alexander • v-Knots, quantum groups and polynomial and Milnor numbers. Etingof-Kazhdan.

- u-Knots and Drinfel'd associa- - BF theory and the successful tors. religion of path integrals.

Convolutions on Lie Groups and Lie Algebras and Ribbon 2-Knots, Page 3 - extras and recycling Unitary \Longrightarrow Group-Ring. $\iint \omega_{x+y}^{2} e^{x+y} \phi(x) \psi(y)$ $=\left\langle\omega_{x+y}, \omega_{x+y} e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V \omega_{x+y}, V e^{x+y} \phi(x) \psi(y) \omega_{x+y}\right\rangle$ $=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} V \phi(x) \psi(y) \omega_{x+y}\right\rangle=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} \phi(x) \psi(y) \omega_{x} \omega_{y}\right\rangle$ $=\iint \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} \phi(x) \psi(y)$.

