Homomorphic Expansions and w-Knots Dror Bar-Natan, UWO February 2010,
http://www.math.toronto.edu/~drorbn/Talks/UWO-100225/
Abstract Even though little known, the notion of a "homomorphic expansion" is extremely general; it makes sense in the context of practically any algebraic structure, be it a group, or a group homomorphism, or a quandle, or a planar algebra, or a circuit algebra with unzip operations, or whatever.
Even though little known, w-knots make a cool generalization of ordinary knots. They contain ordinary knots and are contained in 2-knots in 4-space and are easier than the latter. They are a quotient of "virtual knots" and are easier then those.

My talk will be about these two notions, homomorphic expansions and w-knots, and about what happens when the two are put together. Lie algebras arise, and Lie groups, and the Kashiwara-Vergne statement, which is one of the deeper statements about the relationship between Lie groups and Lie algebras.

There are also u-knots, and v-knots, and f-knots, and other things which are not knots at all, and there are equally nifty things to say about homomorphic expansions for all those.

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Homomorphic expansions for a filtered algebraic structure \mathcal{K} :

$$
\left.\begin{array}{rl}
\mathrm{ops} \odot \mathcal{K} & =\mathcal{K}_{0} \quad \supset \mathcal{K}_{1} \\
\Downarrow & \supset \mathcal{K}_{2} \\
\downarrow & \supset \\
\downarrow Z & \mathcal{K}_{3}
\end{array}\right)
$$ An expansion is a filtration respecting $Z: \mathcal{K} \rightarrow \operatorname{gr} \mathcal{K}$ that "covers" the identity on $\mathrm{gr} \mathcal{K}$. A homomorphic expansion is an expansion that respects all relevant "extra" operations. Just for fun.

Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let \mathcal{K}_{1} be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products").
[1] http://qlink.queensu.ca/~4lb11/interesting.html 25/2/10, 2:52pm Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

Examples. 1. The projectivization of a group is a graded associative algebra. 2. Quandle: a set Q with an op \wedge s.t.

$$
\begin{aligned}
& 1 \wedge x=1, \quad x \wedge 1=x \wedge x=x, \\
& (x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z) . \\
& \text { (appetizers) } \\
& \text { (main) }
\end{aligned}
$$

$\operatorname{proj} Q$ is a graded Lie algebra: set $\bar{v}:=(v-1)$ (these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree:

$$
(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})
$$

A Ribbon 2 -Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$, modulo isotopies of S alone.

$=$

What are w-Trivalent Tangles?
(PA :=Planar Algebra) $\left.\left.\left\{\begin{array}{c}\text { knots } \\ \& \text { links }\end{array}\right\}=\mathrm{PA}\langle/, \mid R 123: \rho=\rangle,\right\rangle^{\prime}=\right)\left(, \prime^{\prime \prime}=\lambda^{\prime \prime}\right\rangle_{0 \text { legs }}$ $\left\{\begin{array}{c}\text { trivalent } \\ \text { tangles }\end{array}\right\}=\operatorname{PA}\langle/, \lambda \mid R 23, R 4:, \lambda\rangle=$ $\mathrm{wTT}=$

$$
\left\{\begin{array}{c}
\text { trivalent } \\
\text { w-tangles }
\end{array}\right\}=\mathrm{PA}\left\langle\begin{array}{c|c|c}
\text { w- } & \begin{array}{c}
\text { w- }
\end{array} & \begin{array}{c}
\text { unary w- } \\
\text { generators }
\end{array}
\end{array}\right\rangle
$$

The w-relations include R234, VR1234, M, Overcrossings Commute (OC) but not UC, $W^{2}=1$, and funny interactions between the wen and the cap and over- and under-crossings:

Our case(s).

$$
\mathcal{K} \underset{\begin{array}{c}
\text { solving finitely many } \\
\text { equations in finitely } \\
\text { many unknowns }
\end{array}}{\text { Z: high algebra }} \underset{\text { gr }}{\mathcal{K}}: \overline{\overline{\mathcal{K}}} \xrightarrow[\begin{array}{l}
\text { low algebra: pic- } \\
\text { tures represent } \\
\text { formulas }
\end{array}]{\stackrel{\text { given a "Lie" }}{\text { algebra } \mathfrak{g}}} \text { " } \mathcal{U}(\mathfrak{g}) \text { " }
$$

\mathcal{K} is knot theory or topology; gr \mathcal{K} is finite combinatorics: bounded-complexity diagrams modulo simple relations.

Homomorphic Expansions and w-Knots, Page 2

Knot-Theoretic statement. There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:

Convolutions statement (Kashiwara-Vergne). Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra, let $j: \mathfrak{g} \rightarrow \mathbb{R}$ be the Jacobian of the exponential map $\exp : \mathfrak{g} \rightarrow G$, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x):=j^{1 / 2}(x) f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then

$$
\Phi(f) \star \Phi(g)=\Phi(f \star g)
$$

Measure theoretic statement. Ignoring all j 's, there exists a measure preserving and orbit preserving transformation T : $\mathfrak{g}_{x} \times \mathfrak{g}_{y} \rightarrow \mathfrak{g}_{x} \times \mathfrak{g}_{y}$ for which $e^{x+y} \circ T=e^{x} e^{y}$.

Top. to Comb. gr_{m} wTT $:=\{m-$ cubes $\} /\{(m+1)-$ cubes $\}:$

w-Jacobi diagrams and $\mathcal{A} . \mathcal{A}^{w}(Y \uparrow) \cong \mathcal{A}^{w}(\uparrow \uparrow \uparrow)$ is

Diagrammatic to Algebraic. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

