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xamples. 1. The projectivization of a group is a graded
associative algebra. 2. Quandle: a set Q with an op A s.t.

IhNz=1, xAl=xAz=nr, (appetizers)

[Abstract Even though little known, the notion of a “homo-
morphic expansion” is extremely general; it makes sense in the
context of practically any algebraic structure, be it a group,
or a group homomorphism, or a quandle, or a planar algebra,
or a circuit algebra with unzip operations, or whatever.

Even though little known, w-knots make a cool generaliza-
tion of ordinary knots. They contain ordinary knots and are
contained in 2-knots in 4-space and are easier than the latter.
They are a quotient of “virtual knots” and are easier then
those.

My talk will be about these two notions, homomorphic ex-
pansions and w-knots, and about what happens when the two
are put together. Lie algebras arise, and Lie groups, and the
[Kashiwara-Vergne statement, which is one of the deeper state-
ments about the relationship between Lie groups and Lie al-
gebras.

There are also u-knots, and v-knots, and f-knots, and other
things which are not knots at all, and there are equally nifty
things to say about homomorphic expansions for all those.

(@Ay)Az=(xA2)A(YyAz).
proj @ is a graded Lie algebra: set o := (v—1) (these generate
'), feed 14+, 1+ g, 1 + z in (main), collect the surviving
terms of lowest degree:
EAPANZ=EAND)AG+TA(GAZ).

IA Ribbon 2-Knot is a surface S embedded in R* that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,

whose preimages in B are a disk D; in the interior of B and
a disk Do with Do N 8B 0D
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e Has kinds, objects, operations, and maybe constants.
e Perhaps subject to some axioms.
e We always allow formal linear combinations.
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omomorphic expansions for a filtered algebraic structure K:

OpSG/C = IC() D) K1 D Ko
! lz
OpSGgr/C = ICO/IC1 D ’Cl/’CQ D ICQ/ICQ, D IC3/IC4 D ...
IAn expansion is a filtration respecting Z : K — gr/C that
“covers” the identity on gr K. A homomorphic expansion is
an expansion that respects all relevant ‘extra” operations.
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The w-relations include R234, VR1234, M, Overcrossings
Commute (OC) but not UC, W2 = 1, and funny interactions
between the wen and the cap and over- and under-crossings:

w-tangles generators | relations| operations

Just for fun.
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IKC, allow formal linear combinations, let K; be the ideal
enerated by differences (the “augmentation ideal”), and let
Ko := ((K1)™) (using all available “products”).
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[1] http://glink.queensu.ca/~4lb11/interesting.html 25/2/10, 2:52pm
IAlso see http://www.math.toronto.edu/~drorbn/papers/WKO/

IC is knot theory or topology; grC is finite combinatorics:

bounded-complexity diagrams modulo simple relations.
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not-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles.
respect R4 and intertwine annulus and disk unzips:
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In particular, Z should
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[Top. to Comb. gr,, wTT := {m — cubes}/{(m+1) — cubes}
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Convolutions statement (Kashiwara-Vergne). Convolutions of
invariant functions on a Lie group agree with convolutions
of invariant functions on its Lie algebra.
let G be a finite dimensional Lie group and let g be its Lie
: g — R be the Jacobian of the exponential
map exp : g — G, and let ® : Fun(G) — Fun(g) be given
by ©(f)(x) == jV/2(x) f(expa).

IAd-invariant and supported near the identity, then

= ®(fxg).
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More accurately,

Then if f,g € Fun(G) are
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g and g* and with [z;, z;] =

Diagrammatic to Algebraic. With (z;) and (¢?) dual bases of
> bF;ak, we have AY — U via
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lTeasure theoretic statement. Ignoring all j’s, there exists a
measure preserving and orbit preserving transformation 7T :
g: X gy — gz X gy for which e* TV o T = e%eY.
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Topology

Ordinary (usual) knot-
ted objects in 3D —
braids, knots, links, tan-
gles, knotted graphs, etc.

Virtual knotted objects
“algebraic” knotted
objects, or “not specifi-
cally embedded” knotted
objects; knots drawn on
a surface, modulo stabi-
lization.

Ribbon  knotted ob-
jects in 4D; “flying
rings”. Like v, but

also with “overcrossings
commute”.

i7j7k7l7m7n:1
0, v, and w Knots) x (lopology. combmatorcs, Tow algebra, and Tigh algebray i
The u-v-w Sto ry Do BN, Kansas S Apri1 2009,y mathoront edfdorbm TalkKSU-050407
1 u—knots i s, — ol w—knots |
| | _# ﬁh@éaagt o vohnen e v oot 3 | w i for weldsd, weakly v, and warmup:
II—KHOtS V—KHOtS W-KHOtS g G i 3 § >( ot {w—knots}=( v—knots}/(OC)

u—knots are usual knots:
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“Knots in R*”
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Chord diagrams and Ja-
cobi diagrams, modulo
4T, STU, THX, etc.

Arrow diagrams and
v-Jacobi diagrams,
modulo 67 and various
“directed” STUs and
THXs, etc.

Like v, but also with
“tails commute”. Only
“two in one out” internal
vertices.

Finite dimensional
metrized Lie algebras,
representations, and
associated spaces.

Finite dimensional Lie
bi-algebras, represen-
tations, and associated
spaces.

Finite
co-commutative Lie
bi-algebras (i.e., g X g*),
representations, and
associated spaces.
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High Algebra| Low Algebra [Combinatorics

The Drinfel’d theory of
associators.

Likely, quantum groups

and the Etingof-
Kazhdan  theory  of
quantization  of  Lie

bi-algebras.

The Kashiwara-Vergne-
Alekseev-Torossian the-
ory of convolutions on
Lie groups and Lie alge-
bras.
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Some Propaganda

"God created the knots, all else i
topology is the work of mortals.'
Leopold Kronecker (modified) |
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