Kolmogorov's Solution of Hilbert's 13th Problem — A Guided Ascent

UofT October 10, 2002

Dror Bar-Natan

See http://www.math.toronto.edu/~drorbn/Talks/UofT-021010/

Base Camp. If $\lambda > 0$ is irrational, $\epsilon > 0$, and $f : [0, 1] \times [0, 1] \to \mathbf{R}$ is continuous, then there exists a continuous function $\phi : [0, 1] \to [0, 1]$ and a continuous function $g : [0, 1 + \lambda] \to \mathbf{R}$ so that $|f(x, y) - g(\phi(x) + \lambda \phi(y))| < \epsilon$ on at least 98% of the area of $[0, 1] \times [0, 1]$.

Camp I. If $\lambda > 0$ is irrational then there exists a continuous function $\phi : [0,1] \to [0,1]$ so that for every $\epsilon > 0$ and every continuous function $f : [0,1] \times [0,1] \to \mathbf{R}$ there exists a continuous function $g : [0,1+\lambda] \to \mathbf{R}$ so that $|f(x,y) - g(\phi(x) + \lambda \phi(y))| < \epsilon$ on a set of area at least $1 - \epsilon$ in $[0,1] \times [0,1]$. (Notice the different order of the quantifiers!).

Camp II. If $\lambda > 0$ is irrational and $\epsilon > 0$ then there exists 5 continuous functions $\phi_i : [0,1] \to [0,1]$ $(1 \le i \le 5)$ so that for every continuous function $f : [0,1] \times [0,1] \to \mathbf{R}$ there exists a continuous function $g : [0,1+\lambda] \to \mathbf{R}$ so that

$$|f(x,y) - \sum_{i=1}^{5} g(\phi_i(x) + \lambda \phi_i(y))| < \left(\frac{2}{3} + \epsilon\right) ||f||$$

for every $x, y \in [0, 1]$.

Summit. If $\lambda > 0$ is irrational then there exists 5 continuous functions $\phi_i : [0, 1] \rightarrow [0, 1]$ $(1 \leq i \leq 5)$ so that for every continuous function $f : [0, 1] \times [0, 1] \rightarrow \mathbf{R}$ there exists a continuous function $g : [0, 1 + \lambda] \rightarrow \mathbf{R}$ so that

$$f(x,y) = \sum_{i=1}^{5} g(\phi_i(x) + \lambda \phi_i(y))$$

for every $x, y \in [0, 1]$.

Hints: Chocolate tablets, nested chocolate tablets, shifted chocolate tablets and Tietze.

image from http://www.vantagehouse.com/hans/hb_pralines.htm