Dror Bar-Natan: Talks: UofT-GS-090930:

Kolmogorov's Solution of Hilbert's 13th Problem A Guided Ascent

http://www.math.toronto.edu/~drorbn/Talks/UofT-GS-090930/

Fix once and for all some irrational number $\lambda \in(0,1)$. It may as well be the most irrational number there is, $(\sqrt{5}-1) / 2$.
Step 1. If $\epsilon>0$ and $f:[0,1] \times[0,1] \rightarrow \mathbf{R}$ is continuous, then there exists a continuous function $\phi:[0,1] \rightarrow[0,1]$ and a continuous function $g:[0,1+\lambda] \rightarrow \mathbf{R}$ so that $\mid f(x, y)-$ $g(\phi(x)+\lambda \phi(y)) \mid<\epsilon$ on at least 98% of the area of $[0,1] \times[0,1]$.
Step 2. There exists a continuous function $\phi:[0,1] \rightarrow[0,1]$ so that for every $\epsilon>0$ and every continuous function $f:[0,1] \times[0,1] \rightarrow \mathbf{R}$ there exists a continuous function $g:[0,1+\lambda] \rightarrow \mathbf{R}$ so that $|f(x, y)-g(\phi(x)+\lambda \phi(y))|<\epsilon$ on a set of area at least $1-\epsilon$ in $[0,1] \times[0,1]$. (Notice the different order of the quantifiers!).
Step 3. There exists 5 continuous functions $\phi_{i}:[0,1] \rightarrow[0,1](1 \leq i \leq 5)$ so that for every $\epsilon>0$ and every continuous function $f:[0,1] \times[0,1] \rightarrow \mathbf{R}$ there exists a continuous function $g:[0,1+\lambda] \rightarrow \mathbf{R}$ so that

$$
\left|f(x, y)-\sum_{i=1}^{5} g\left(\phi_{i}(x)+\lambda \phi_{i}(y)\right)\right|<\left(\frac{2}{3}+\epsilon\right)\|f\|
$$

for every $x, y \in[0,1]$.
Step 4. There exists 5 continuous functions $\phi_{i}:[0,1] \rightarrow[0,1](1 \leq i \leq 5)$ so that for every continuous function $f:[0,1] \times[0,1] \rightarrow \mathbf{R}$ there exists a continuous function $g:[0,1+\lambda] \rightarrow \mathbf{R}$ so that

$$
f(x, y)=\sum_{i=1}^{5} g\left(\phi_{i}(x)+\lambda \phi_{i}(y)\right)
$$

for every $x, y \in[0,1]$.
Hints: Chocolate tablets, nested chocolate tablets, shifted chocolate tablets and Tietze.

