FUNDAMENTAL CONCEPTS IN DIFFERENTIAL GEOMETRY FALL 2000 HANDOUT # 2

1. Exercises for the Proper Course

Exercises 1 and 2 are extracted from Bredon's book.

1. Let X be the graph of the real valued function $\theta(x) = |x|$ of a real variable x. Define a functional structure on X by taking $f \in F(U)$ if and only if f is the restriction to U os a C^{∞} function on some open subset V of \mathbb{R}^2 such that $U = V \cap X$. Show that X with this structure is *not* diffeomorphic to the real line with the usual C^{∞} structure.

2. Let X be a copy of the real line \mathbb{R} and let $\phi(x) = x^3$. Taking ϕ as a chart, this defines a smooth structure on X. Prove or disprove the following statements:

- (1) X is diffeomorphis with \mathbb{R} .
- (2) the identity map $X \to \mathbb{R}$ is a diffeomorphism.
- (3) ϕ together with the identity map comprise an atlas.
- (4) on the one point compactification X^+ of X, ϕ and ψ give an atlas, where $\psi(x) = 1/x$, for $x \neq 0$, and $\psi(\infty) = 0$. (ψ is defined on $X^+ \{0\}$.)

3. The space $\mathbb{C}P^n$ is the quotient of $\mathbb{C}^{n+1} - \{0\}$ under the equivalence relation

$$(z_0,\ldots,z_n) \sim (\lambda z_0,\ldots,\lambda z_n) \qquad ,\lambda \in \mathbb{C}^*.$$

Let $\pi: \mathbb{C}^{n+1} \to \mathbb{C}P^n$ be the projection map. Define the smooth structure using the pushforward of the structure sheaf. Show that so defined $\mathbb{C}P^n$ is a smooth manifold.

Find a diffeomorphism of S^2 and $\mathbb{C}P^1$.

4. Show that every connected 1-dimensional smooth manifold is diffeomerphic to the unit circle S^1 . You may assume that your manifold is given a metric d if you find it convenient.

1