FUNDAMENTAL CONCEPTS IN DIFFERENTIAL GEOMETRY FALL 2000 HANDOUT # 3

1. Exercises for the Proper Course

1. For $p \in M^n$ let \mathcal{C} be the collection of triples (U, φ, α) where U is a neighborhood of p, φ is a chart carrying p to u, and α is a vector in \mathbb{R}^n . Define an equivalence relation on \mathcal{C} by defining $(U, \varphi, \alpha) \sim (V, \psi, \beta)$ if

$$\beta = (\psi \varphi^{-1})'|_u(\alpha)$$

where $\psi \varphi^{-1}$ is defined on an appropriate neighborhood of u.

Show that \mathcal{C}/\sim has a natural structure of a vector space. Show that there is a natural isomorphism of vector spaces $\mathcal{C}/\sim\cong T_pM$.

2. Show that if U is an open subset of a smooth manifold M, and if $p \in U$, then $T_pU = T_pM$. Make this statement precise !

- (a) Make a precise sense of the following statement. The tangent space to the sphere S² = {x ∈ ℝ³ : ||x|| = 1} at the point u, consists of all vectors in ℝ³ perpendicular to u.
- (b) Consider Euler's parameterization of the sphere

 $\Psi: (\theta, \phi) \mapsto (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)$

where $-\pi < \theta < \pi$ and $0 < \phi < \pi$. Compute $\Psi_*(\frac{\partial}{\partial \theta})$ and $\Psi_*(\frac{\partial}{\partial \phi})$. Show that these are indeed vectors in the tangent space to the sphere.

Date: 14 Nov., 2000.