FUNDAMENTAL CONCEPTS IN DIFFERENTIAL GEOMETRY FALL 2000
 HANDOUT \# 3

1. Exercises for the Proper Course

1. For $p \in M^{n}$ let \mathcal{C} be the collection of of triples (U, φ, α) where U is a neighborhood of p, φ is a chart carrying p to u, and α is a vector in \mathbb{R}^{n}. Define an equivalence relation on \mathcal{C} by defining $(U, \varphi, \alpha) \sim(V, \psi, \beta)$ if

$$
\beta=\left.\left(\psi \varphi^{-1}\right)^{\prime}\right|_{u}(\alpha)
$$

where $\psi \varphi^{-1}$ is defined on an appropriate neighborhoodof u.
Show that \mathcal{C} / \sim has a natural structure of a vector space. Show that there is a natural isomorphism of vector spaces $\mathcal{C} / \sim \cong T_{p} M$.
2. Show that if U is an open subset of a smooth manifold M, and if $p \in U$, then $T_{p} U=T_{p} M$. Make this statement precise !
3. (a) Make a precise sense of the following statement.

The tangent space to the sphere $S^{2}=\left\{x \in \mathbb{R}^{3}:\|x\|=1\right\}$ at the point u, consists of all vectors in \mathbb{R}^{3} perpendicular to u.
(b) Consider Euler's parameterization of the sphere

$$
\Psi:(\theta, \phi) \mapsto(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)
$$

where $-\pi<\theta<\pi$ and $0<\phi<\pi$. Compute $\Psi_{*}\left(\frac{\partial}{\partial \theta}\right)$ and $\Psi_{*}\left(\frac{\partial}{\partial \phi}\right)$. Show that these are indeed vectors in the tangent space to the sphere.

[^0]
[^0]: Date: 14 Nov., 2000.

