Dror Bar-Natan: Classes: 2001-02: Fundamental Concepts in Algebraic Topology:

Topological Theorems About \mathbb{R}^n

June 18, 2002

Theorem 1. There is no continuous retract $S^{n-1} \to D^n$.

Theorem 2. (The Brouwer fixed point theorem, ~1910) Every continuous map $f: D^n \to D^n$ has a fixed point.

Theorem 3. If $n \neq m$ then S^n is not homeomorphic to S^m and \mathbb{R}^n is not homeomorphic to \mathbb{R}^m .

Theorem 4. There are no continuous non-vanishing vector fields on even-dimensional spheres.

Theorem 5. If D is an embedded closed disk in S^n then $S^n - D$ is homologically trivial; i.e., $\tilde{H}_i(S^n - D) = 0$ for all i.

Theorem 6. If S is an embedded k-dimensional sphere in S^n for some $0 \le k < n$ then $S^n - S$ is homologically equivalent to an (n-k-1)-dimensional sphere; i.e., $\tilde{H}_i(S^n-S)$ is \mathbb{Z} for i = n-k-1 and 0 otherwise.

Note that these two theorems are homotopically false!

Corollary 7. (The Jordan Curve Theorem, Veblen 1905) A simple closed curve in the plane separates the plane into exactly two connected components. (In fact, by the same reasoning an embedded S^{n-1} in S^n separates the latter into exactly two connected components).

Theorem 8. (Invariance of Domain) If a subset of \mathbb{R}^n is homeomorphic to an open set in \mathbb{R}^n , then it is an open set in \mathbb{R}^n .

Corollary 9. If $M \hookrightarrow N$ is an embedding of a compact manifold in a connected manifold of the same dimension, then it is a homeomorphism.

- —

Theorem 10. (The Borsuk-Ulam Theorem) Every continuous map $f : S^n \to \mathbb{R}^n$ identifies a pair of antipodal points.

Theorem 11. \mathbb{R} and \mathbb{C} are the only commutative division algebras with identity over \mathbb{R} .