THE FULTON-MACPHERSON COMPACTIFICATION

DROR BAR-NATAN

Let M be a manifold and let A be a finite set.
Definition 1. The open configuration space of A in M is

$$
C_{A}^{o}(M):=\{\text { injections } \iota: A \rightarrow M\} .
$$

Definition 2. The compactified configuration space of A in M is

$$
C_{A}(M):=\coprod_{\substack{\left\{A_{1}, \ldots, A_{k}\right\} \\ A=\cup A_{\alpha}}}\left\{\left(p_{\alpha} \in M, c_{\alpha} \in \tilde{C}_{A_{\alpha}}\left(T_{p_{\alpha}} M\right)\right)_{\alpha=1}^{k}: p_{\alpha} \neq p_{\beta} \text { for } \alpha \neq \beta\right\}
$$

where if V is a vector space and $|A| \geq 2$,

$$
\tilde{C}_{A}(V):=\coprod_{\substack{\left\{A_{1}, \ldots, A_{k}\right\} \\
A=\cup \mathcal{A}_{\alpha} ; k \geq 2}}\left\{\left(v_{\alpha} \in V, c_{\alpha} \in \tilde{C}_{A_{\alpha}}\left(T_{v_{\alpha}} V\right)\right)_{\alpha=1}^{k}: v_{\alpha} \neq v_{\beta} \text { for } \alpha \neq \beta\right\} / \begin{gathered}
\text { translations and } \\
\text { dilations }
\end{gathered}
$$

while if A is a singleton, $\tilde{C}_{A}(V):=\{$ a point $\}$.
Theorem 1. (1) $C_{A}(M)$ ia a manifold with corners, and if M is compact, so is $C_{A}(M)$.
(2) If A is a singleton, $C_{A}(M)=M$. If A is a doubleton, then $C_{A}(M)$ is isomorphic to $M \times M$ minus a tubular neighborhood of the diagonal $\Delta \subset M \times M$. That is, $C_{A}(M)=M \times M-V(\Delta)$.
(3) If $B \subset A$ then there is a natural map $C_{A}(M) \rightarrow C_{B}(M)$. In particular, for every $i, j \in A$ there is a $\operatorname{map} \phi_{i j}: C_{A}\left(\mathbb{R}^{3}\right) \rightarrow C_{\{i, j\}}\left(\mathbb{R}^{3}\right) \sim S^{2}$.
(4) If $f: M \rightarrow N$ is a smooth embedding, then there's a natural $f_{\star}: C_{A}(M) \rightarrow C_{A}(N)$.

Now let D be a graph whose set of vertices is A. If two different vertices $a_{0,1} \in A$ are connected by an edge in D, we write $a_{0} \stackrel{D}{-} a_{1}$. Likewise, if $A_{0,1} \subset A$ are disjoint subsets, we write $A_{0} \stackrel{D}{-} A_{1}$ if $a_{0} \stackrel{D}{-} a_{1}$ for some $a_{0} \in A_{0}$ and $a_{1} \in A_{1}$. For any subset A_{0} of A we let $D\left(A_{0}\right)$ be the restriction of D to A_{0}.

Definition 3. The open configuration space of D in M is

$$
C_{D}^{o}(M):=\left\{\iota: A \rightarrow M: \iota\left(a_{0}\right) \neq \iota\left(a_{1}\right) \text { whenever } a_{0} \stackrel{D}{-} a_{1}\right\}
$$

Definition 4. The compactified configuration space of D in M is

$$
C_{D}(M):=\coprod_{\substack{\left\{A_{1}, \ldots, A_{k}\right\} \\ A=\cup A_{\alpha} \\ \forall \alpha D\left(A_{\alpha}\right) \text { connected }}}\left\{\left(p_{\alpha} \in M, c_{\alpha} \in \tilde{C}_{D\left(A_{\alpha}\right)}\left(T_{p_{\alpha}} M\right)\right)_{\alpha=1}^{k}: p_{\alpha} \neq p_{\beta} \text { whenever } A_{\alpha} \stackrel{D}{-} A_{\beta}\right\}
$$

where if V is a vector space and $|A| \geq 2$,

$$
\tilde{C}_{D}(V):=\coprod_{\substack{\left\{A_{1}, \ldots, A_{k}\right\} \\
A==A_{\alpha} ; k \geq 2 \\
\forall \alpha \\
D\left(A_{\alpha}\right) \text { connected }}}\left\{\left(v_{\alpha} \in V, c_{\alpha} \in \tilde{C}_{D\left(A_{\alpha}\right)}\left(T_{v_{\alpha}} V\right)\right)_{\alpha=1}^{k}: v_{\alpha} \neq v_{\beta} \text { whenever } A_{\alpha} \frac{D}{-} A_{\beta}\right\} / \begin{gathered}
\text { translations } \\
\text { and } \\
\text { dilations. }
\end{gathered}
$$

while if A is a singleton, $\tilde{C}_{D}(V):=\{$ a point $\}$.
Theorem 2. The obvious parallel of the previous theorem holds.

[^0]
[^0]: Date: December 9, 2002.
 This handout is at available from http://www.ma.huji.ac.il/~drorbn/classes/0102/FeynmanDiagrams/.

