Dror Bar-Natan: Classes: 2002-03: Math 157 - Analysis I:

A Little on Convexity

web version:
www.math.toronto.edu/~drorbn/classes/0203/157AnalysisI/Convexity/Convexity.html
We are skipping the appendix on convexity of Spivak's Chapter 11, but it is still worthwhile to take something from it (without proof):

Theorem. The following are equivalent, for a function f defined on some interval I (assuming f is such that these statements make sense):

1. All the secants of f are above the graph of f.
2. For every $a, b \in I$ and every $t \in(0,1)$,

$$
f(t a+(1-t) b)<t f(a)+(1-t) f(b)
$$

3. The tangents to the graph of f all lie below that graph and touch it just at the points of tangency.
4. The derivative f^{\prime} is increasing.
5. The second derivative $f^{\prime \prime}$ is positive on $I: \forall x \in I f^{\prime \prime}(x)>0$. (Gary Baumgartner makes the following correction: This last statement implies all others, but it isn't implied by the others as can be seen by looking for example at $f(x)=x^{4}$. If all sharp inequalities in this handout are replaced by non-sharp ones (i.e., replace $>$ by \geq and $<$ by \leq everywhere, with similar corrections for verbal statements), then this statement becomes equivalent to all others).
If any of these statements holds, we say that " f is convex". There is a similar theorem with all inequalities reversed, and then the name is " f is concave".
