Dror Bar-Natan: Classes: 2002-03: Math 157 - Analysis I:

Math 157 Analysis I — Solution of the Final Exam

web version: http://www.math.toronto.edu/~drorbn/classes/0203/157AnalysisI/Final/Solution.html

Problem 1. Let f and g denote functions defined on some set A.

1. Prove that

sup(f(x) + g(z)) < sup f(z) + sup g(x).
TEA z€A z€A

2. Find an example for a pair f, ¢g for which

sup(f(x) + g(z)) = sup f(z) + sup g().
z€A €A z€EA

3. Find an example for a pair f, g for which

ilelg(f () +9(z)) < Sup flz) + Sup 9().

Solution.

1. For any = € A, f(x) < sup,e, f(x) and g(z) < sup,c4 g(x) and hence f(x) + g(x) <
sUp,eq f(x) + sup,eq g(z). Thus sup,cy f(x) + sup,eq g(x) is an upper bound for
f(z)+g(x) on A, and hence it is no smaller than the least upper bound for f(x)+ g(z)
on A, which is sup,c 4 (f(z) + g(x)).

2. Take say f and g to be the constant functions 0, and then sup,.4(f(z) + g(x)) and
SUPea f(7) + sup,e4 g(x) are both 0.

3. Take say f(z) = z and g(z) = —x on A = [0,1]. Then f(x) + g(x) = 0 and hence
sup,ea(f(x) + g(x)) = 0 while sup,c4 f(z) = 1 and sup,c4 g(z) = 0 and hence

SUPgea () +supeq g(z) = 1. Thus sup,c(f(z) +9(x)) =0 < 1 = sup,e4 f(z) +
SUp,c 4 9(x) as required.

Problem 2. Sketch the graph of the function y = f(z) = ;E T Make sure that your
x —

graph clearly indicates the following:

e The domain of definition of f(x).
e The behaviour of f(z) near the points where it is not defined (if any) and as x — +o0.

e The exact coordinates of the x- and y-intercepts and all minimas and maximas of f(x).



Solution. f(z) is defined for x # 41, and the following limits are easily computed:
lim, .4+ f(z) =1, lim, . - f(x) =lim, 1+ f(z) = oo and lim,_, 1+ f(z) = lim,_,1- f(z) =
—o0. The only solution for f(x) = 0 is z = 0, hence the only intersection of the graph of
f(z) with the axes is at (0,0). Other than at = 0, the numerator of f is always positive,
hence the sign of the function is determined by the sign of the denominator 22 — 1. Thus
f(z) <0 for |x] < 1 and f(z) > 0 for |x| > 1. Finally f'(z) = 2’”(:”(11)1_);”% = —(zz2f1)2
and thus f’ is positive and f is increasing (locally) for x < 0 and f’ is negative and f is
decreasing (locally) for = > 0. Thus overall the graph is:

Problem 3. Compute the following integrals:

2
1

1'/:1:—4— dx
r+1

Solution. By long division of polynomials, 22 +1 = (z + 1)(x — 1) + 2. Thus we can
rewrite our integral as a sum of two terms as follows

JE e e et

22
=3 —x+2log(z +1).

1
2‘/1’—1— dx
2+ 1

Solution.  Again we rewrite the integral as a sum of two terms. On the first we
perform the substitution u = x?; the second is elementary:

1/2xdx +/ dx 1/ du N . 11 ( +1)+ ;
— = — arctanxr = — 10g(u arctan xr
2| 211 2+1 2/ u+tl 9 %8

1
=3 log(z® + 1) + arctan x.




3. /x2 sin x dx

Solution. We integrate by parts twice, as follows:
/x2 sinz dr = 2*(— cos 1) — / 2x(— cosx)dx

= —a?cosz — 2x(—sinz) — /2(— sinz)dr = 2rsinz — 2% cos ¥ + 2 cos .

4 / dx
) Viter
Solution. Set u = /1 + ¢* and then e = u* — 1 and du = 2\6/11l(few = (“2;)‘“ and so
dx = 272‘%“ and

1
/dx _/2udu_/du_/du
Vite ) ou-1) ) u—1 u+1

u—l_lo V1i+er—1

ut+1 ngrl'

=log(u — 1) — log(u + 1) = log

5. / e “dx
0

Solution.

o
_ ) e ) _ _
exdx:hm—ex’ = lim e %—e X =1.
0 X—o0 0 X—o00

Or using a shorter and less precise notation, but good enough —

o
— —7 |0 — _
/ exdx:—ex‘o —e Ve =1.
0

Problem 4.  Agents of the CSIS have secretly developed a function e(z) that has the
following properties:

o c(x+y)=-e(x)e(y) for all z,y € R.

e c(0)=1

e ¢ is differentiable at 0 and €'(0) = 1.
Prove the following:

1. e is everywhere differentiable and ¢’ = e.

2. e(x) = €® for all x € R. The only lemma you may assume is that if a function f
satisfies f'(z) = 0 for all « then f is a constant function.

Solution.



1. The given fact that 1 = ¢/(0) means that 1 = limy,_ <2=4© — Jim, _,

using e(z + h) = e(z)e(h) we get ' '
. e(x+h)—e(x) . e(x)e(h)—e(x) . e(h)—1
L L

This proves both that e is differentiable at = and that €’(z) = e(x).
2. Consider ¢(z) = e(z)e~*. Differentiating we get
qd(z) =€(x)e ™ +e(x)(e™) =e(x)e™ —e(x)e ™™ =0.

Hence ¢(z) is a constant function. But ¢(0) = e(0)e” = 1-1 = 1, hence this constant
must be 1. So e(z)e™ = 1 and thus e(z) = e”.

Problem 5.

1. Prove that if a sequence of continuous functions f,, converges uniformly to a function
f on some interval [a,b], then f is continuous on [a, b].

2. Prove that the series Y > | o-sin(3"z) converges on (—oco,00) and that its sum is a

continuous function of z.
Solution.

1. See Spivak’s Theorem 2 of Chapter 24.

2. |2Ln sin(3"z)| < 2% and ">, 2%1 converges. Hence by the Weierstrass M-Test the series
> | 5= sin(3"z) converges uniformly. As each of the terms 5 sin(3"z) is continuous,
the first part of this question implies that so is the sum.

Problem 6. Prove that the complex function z +— Z is everywhere continuous but nowhere
differentiable.

Solution. The key point is that |w| = |w| for every complex number w. Let ¢ > 0 and
set 0 = e. Now if |z — 29| < ¢ then |Z — Zg| = |z — 20| = |z — 20| < 6 = €. This proves the
continuity of z +— Z. Let us check if this function is differentiable:

. z2+h—-2Z . zZ+h—-2Z . h

A e N Y S
If we restrict our attention to real h then the latter quotient is always 1, so the limit would
be 1. If we restrict our attention to imaginary h, h = ¢y with real y, then that quotient is
% = _Z—;y = —1 so the limit would be —1. Hence the limit cannot exist and z — Z is not
differentiable at (an arbitrary) z.
The results. 76 students took the exam; the average grade was 72.66/120, the median was
71.5/120 and the standard deviation was 25.5. The overall grade average for the course (of
X =0.057140.1575 4+ 0.1754+0.17, + 0.2HW + 0.4 - 100( F'/120)) was 66.92, the median was
64.9 and the standard deviation was 17.16. Finally, the transformation X — 100(X/100)”
was applied to the grades, with v = 0.82. This made the average grade 71.55, the median
70 and the standard deviation 15.31. There were 25 A’s (grades above 80) and 5 failures

(grades below 50).



