
Dror Bar-Natan: Classes: 2002-03: Math 157 - Analysis I:

Math 157 Analysis I — Solution of the Final Exam

web version: http://www.math.toronto.edu/˜drorbn/classes/0203/157AnalysisI/Final/Solution.html

Problem 1. Let f and g denote functions defined on some set A.

1. Prove that
sup
x∈A

(f(x) + g(x)) ≤ sup
x∈A

f(x) + sup
x∈A

g(x).

2. Find an example for a pair f , g for which

sup
x∈A

(f(x) + g(x)) = sup
x∈A

f(x) + sup
x∈A

g(x).

3. Find an example for a pair f , g for which

sup
x∈A

(f(x) + g(x)) < sup
x∈A

f(x) + sup
x∈A

g(x).

Solution.

1. For any x ∈ A, f(x) ≤ supx∈A f(x) and g(x) ≤ supx∈A g(x) and hence f(x) + g(x) ≤
supx∈A f(x) + supx∈A g(x). Thus supx∈A f(x) + supx∈A g(x) is an upper bound for
f(x)+g(x) on A, and hence it is no smaller than the least upper bound for f(x)+g(x)
on A, which is supx∈A(f(x) + g(x)).

2. Take say f and g to be the constant functions 0, and then supx∈A(f(x) + g(x)) and
supx∈A f(x) + supx∈A g(x) are both 0.

3. Take say f(x) = x and g(x) = −x on A = [0, 1]. Then f(x) + g(x) = 0 and hence
supx∈A(f(x) + g(x)) = 0 while supx∈A f(x) = 1 and supx∈A g(x) = 0 and hence
supx∈A f(x) + supx∈A g(x) = 1. Thus supx∈A(f(x) + g(x)) = 0 < 1 = supx∈A f(x) +
supx∈A g(x) as required.

Problem 2. Sketch the graph of the function y = f(x) =
x2

x2 − 1
. Make sure that your

graph clearly indicates the following:

• The domain of definition of f(x).

• The behaviour of f(x) near the points where it is not defined (if any) and as x → ±∞.

• The exact coordinates of the x- and y-intercepts and all minimas and maximas of f(x).
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Solution. f(x) is defined for x 6= ±1, and the following limits are easily computed:
limx→±∞ f(x) = 1, limx→−1− f(x) = limx→1+ f(x) = ∞ and limx→−1+ f(x) = limx→1− f(x) =
−∞. The only solution for f(x) = 0 is x = 0, hence the only intersection of the graph of
f(x) with the axes is at (0, 0). Other than at x = 0, the numerator of f is always positive,
hence the sign of the function is determined by the sign of the denominator x2 − 1. Thus

f(x) ≤ 0 for |x| < 1 and f(x) > 0 for |x| > 1. Finally f ′(x) = 2x(x2−1)−x22x
(x2−1)2

= − 2x
(x2−1)2

and thus f ′ is positive and f is increasing (locally) for x < 0 and f ′ is negative and f is
decreasing (locally) for x > 0. Thus overall the graph is:
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Problem 3. Compute the following integrals:

1.

∫
x2 + 1

x + 1
dx

Solution. By long division of polynomials, x2 + 1 = (x + 1)(x− 1) + 2. Thus we can
rewrite our integral as a sum of two terms as follows

∫
(x + 1)(x− 1)

x + 1
dx +

∫
2

x + 1
dx =

∫
(x− 1)dx + 2

∫
1

x + 1
dx

=
x2

2
− x + 2 log(x + 1).

2.

∫
x + 1

x2 + 1
dx

Solution. Again we rewrite the integral as a sum of two terms. On the first we
perform the substitution u = x2; the second is elementary:

1

2

∫
2x dx

x2 + 1
+

∫
dx

x2 + 1
=

1

2

∫
du

u + 1
+ arctan x =

1

2
log(u + 1) + arctan x

=
1

2
log(x2 + 1) + arctan x.
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3.

∫
x2 sin x dx

Solution. We integrate by parts twice, as follows:
∫

x2 sin x dx = x2(− cos x)−
∫

2x(− cos x)dx

= −x2 cos x− 2x(− sin x)−
∫

2(− sin x)dx = 2x sin x− x2 cos x + 2 cos x.

4.

∫
dx√

1 + ex

Solution. Set u =
√

1 + ex and then ex = u2 − 1 and du = exdx
2
√

1+ex = (u2−1)dx
2u

and so

dx = 2udu
u2−1

and

∫
dx√

1 + ex
=

∫
2udu

u(u2 − 1)
=

∫
du

u− 1
−

∫
du

u + 1

= log(u− 1)− log(u + 1) = log
u− 1

u + 1
= log

√
1 + ex − 1√
1 + ex + 1

.

5.

∫ ∞

0

e−xdx

Solution. ∫ ∞

0

e−xdx = lim
X→∞

− e−x
∣∣X
0

= lim
X→∞

e−0 − e−X = 1.

Or using a shorter and less precise notation, but good enough —

∫ ∞

0

e−xdx = − e−x
∣∣∞
0

= e−0 − e−∞ = 1.

Problem 4. Agents of the CSIS have secretly developed a function e(x) that has the
following properties:

• e(x + y) = e(x)e(y) for all x, y ∈ R.

• e(0) = 1

• e is differentiable at 0 and e′(0) = 1.

Prove the following:

1. e is everywhere differentiable and e′ = e.

2. e(x) = ex for all x ∈ R. The only lemma you may assume is that if a function f
satisfies f ′(x) = 0 for all x then f is a constant function.

Solution.
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1. The given fact that 1 = e′(0) means that 1 = limh→0
e(h)−e(0)

h
= limh→0

e(h)−1
h

. Hence,
using e(x + h) = e(x)e(h) we get

lim
h→0

e(x + h)− e(x)

h
= lim

h→0

e(x)e(h)− e(x)

h
= e(x) lim

h→0

e(h)− 1

h
= e(x).

This proves both that e is differentiable at x and that e′(x) = e(x).

2. Consider q(x) = e(x)e−x. Differentiating we get

q′(x) = e′(x)e−x + e(x)(e−x)′ = e(x)e−x − e(x)e−x = 0.

Hence q(x) is a constant function. But q(0) = e(0)e0 = 1 · 1 = 1, hence this constant
must be 1. So e(x)e−x = 1 and thus e(x) = ex.

Problem 5.

1. Prove that if a sequence of continuous functions fn converges uniformly to a function
f on some interval [a, b], then f is continuous on [a, b].

2. Prove that the series
∑∞

n=1
1
2n sin(3nx) converges on (−∞,∞) and that its sum is a

continuous function of x.

Solution.

1. See Spivak’s Theorem 2 of Chapter 24.

2. | 1
2n sin(3nx)| ≤ 1

2n and
∑∞

n=1
1
2n converges. Hence by the Weierstrass M-Test the series∑∞

n=1
1
2n sin(3nx) converges uniformly. As each of the terms 1

2n sin(3nx) is continuous,
the first part of this question implies that so is the sum.

Problem 6. Prove that the complex function z 7→ z̄ is everywhere continuous but nowhere
differentiable.
Solution. The key point is that |w| = |w̄| for every complex number w. Let ε > 0 and
set δ = ε. Now if |z − z0| < δ then |z̄ − z̄0| = |z − z0| = |z − z0| < δ = ε. This proves the
continuity of z 7→ z̄. Let us check if this function is differentiable:

lim
h→0

z + h− z̄

h
= lim

h→0

z̄ + h̄− z̄

h
= lim

h→0

h̄

h
.

If we restrict our attention to real h then the latter quotient is always 1, so the limit would
be 1. If we restrict our attention to imaginary h, h = iy with real y, then that quotient is
h̄
h

= −iy
iy

= −1 so the limit would be −1. Hence the limit cannot exist and z 7→ z̄ is not

differentiable at (an arbitrary) z.
The results. 76 students took the exam; the average grade was 72.66/120, the median was
71.5/120 and the standard deviation was 25.5. The overall grade average for the course (of
X = 0.05T1 +0.15T2 +0.1T3 +0.1T4 +0.2HW +0.4 ·100(F/120)) was 66.92, the median was
64.9 and the standard deviation was 17.16. Finally, the transformation X 7→ 100(X/100)γ

was applied to the grades, with γ = 0.82. This made the average grade 71.55, the median
70 and the standard deviation 15.31. There were 25 A’s (grades above 80) and 5 failures
(grades below 50).
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