Dror Bar-Natan: Classes: 2002-03: Math 157 - Analysis I:

Math 157 Analysis I - Solution of the Final Exam

web version: http://www.math.toronto.edu/~ drorbn/classes/0203/157AnalysisI/Final/Solution.html
Problem 1. Let f and g denote functions defined on some set A.

1. Prove that

$$
\sup _{x \in A}(f(x)+g(x)) \leq \sup _{x \in A} f(x)+\sup _{x \in A} g(x) .
$$

2. Find an example for a pair f, g for which

$$
\sup _{x \in A}(f(x)+g(x))=\sup _{x \in A} f(x)+\sup _{x \in A} g(x) .
$$

3. Find an example for a pair f, g for which

$$
\sup _{x \in A}(f(x)+g(x))<\sup _{x \in A} f(x)+\sup _{x \in A} g(x) .
$$

Solution.

1. For any $x \in A, f(x) \leq \sup _{x \in A} f(x)$ and $g(x) \leq \sup _{x \in A} g(x)$ and hence $f(x)+g(x) \leq$ $\sup _{x \in A} f(x)+\sup _{x \in A} g(x)$. Thus $\sup _{x \in A} f(x)+\sup _{x \in A} g(x)$ is an upper bound for $f(x)+g(x)$ on A, and hence it is no smaller than the least upper bound for $f(x)+g(x)$ on A, which is $\sup _{x \in A}(f(x)+g(x))$.
2. Take say f and g to be the constant functions 0 , and then $\sup _{x \in A}(f(x)+g(x))$ and $\sup _{x \in A} f(x)+\sup _{x \in A} g(x)$ are both 0.
3. Take say $f(x)=x$ and $g(x)=-x$ on $A=[0,1]$. Then $f(x)+g(x)=0$ and hence $\sup _{x \in A}(f(x)+g(x))=0$ while $\sup _{x \in A} f(x)=1$ and $\sup _{x \in A} g(x)=0$ and hence $\sup _{x \in A} f(x)+\sup _{x \in A} g(x)=1$. Thus $\sup _{x \in A}(f(x)+g(x))=0<1=\sup _{x \in A} f(x)+$ $\sup _{x \in A} g(x)$ as required.

Problem 2. Sketch the graph of the function $y=f(x)=\frac{x^{2}}{x^{2}-1}$. Make sure that your graph clearly indicates the following:

- The domain of definition of $f(x)$.
- The behaviour of $f(x)$ near the points where it is not defined (if any) and as $x \rightarrow \pm \infty$.
- The exact coordinates of the x - and y-intercepts and all minimas and maximas of $f(x)$.

Solution. $\quad f(x)$ is defined for $x \neq \pm 1$, and the following limits are easily computed: $\lim _{x \rightarrow \pm \infty} f(x)=1, \lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\infty$ and $\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=$ $-\infty$. The only solution for $f(x)=0$ is $x=0$, hence the only intersection of the graph of $f(x)$ with the axes is at $(0,0)$. Other than at $x=0$, the numerator of f is always positive, hence the sign of the function is determined by the sign of the denominator $x^{2}-1$. Thus $f(x) \leq 0$ for $|x|<1$ and $f(x)>0$ for $|x|>1$. Finally $f^{\prime}(x)=\frac{2 x\left(x^{2}-1\right)-x^{2} 2 x}{\left(x^{2}-1\right)^{2}}=-\frac{2 x}{\left(x^{2}-1\right)^{2}}$ and thus f^{\prime} is positive and f is increasing (locally) for $x<0$ and f^{\prime} is negative and f is decreasing (locally) for $x>0$. Thus overall the graph is:

Problem 3. Compute the following integrals:

1. $\int \frac{x^{2}+1}{x+1} d x$

Solution. By long division of polynomials, $x^{2}+1=(x+1)(x-1)+2$. Thus we can rewrite our integral as a sum of two terms as follows

$$
\begin{aligned}
\int \frac{(x+1)(x-1)}{x+1} d x & +\int \frac{2}{x+1} d x=\int(x-1) d x+2 \int \frac{1}{x+1} d x \\
& =\frac{x^{2}}{2}-x+2 \log (x+1)
\end{aligned}
$$

2. $\int \frac{x+1}{x^{2}+1} d x$

Solution. Again we rewrite the integral as a sum of two terms. On the first we perform the substitution $u=x^{2}$; the second is elementary:

$$
\begin{aligned}
\frac{1}{2} \int \frac{2 x d x}{x^{2}+1}+\int \frac{d x}{x^{2}+1} & =\frac{1}{2} \int \frac{d u}{u+1}+\arctan x=\frac{1}{2} \log (u+1)+\arctan x \\
& =\frac{1}{2} \log \left(x^{2}+1\right)+\arctan x
\end{aligned}
$$

3. $\int x^{2} \sin x d x$

Solution. We integrate by parts twice, as follows:

$$
\begin{gathered}
\int x^{2} \sin x d x=x^{2}(-\cos x)-\int 2 x(-\cos x) d x \\
=-x^{2} \cos x-2 x(-\sin x)-\int 2(-\sin x) d x=2 x \sin x-x^{2} \cos x+2 \cos x .
\end{gathered}
$$

4. $\int \frac{d x}{\sqrt{1+e^{x}}}$

Solution. Set $u=\sqrt{1+e^{x}}$ and then $e^{x}=u^{2}-1$ and $d u=\frac{e^{x} d x}{2 \sqrt{1+e^{x}}}=\frac{\left(u^{2}-1\right) d x}{2 u}$ and so $d x=\frac{2 u d u}{u^{2}-1}$ and

$$
\begin{gathered}
\int \frac{d x}{\sqrt{1+e^{x}}}=\int \frac{2 u d u}{u\left(u^{2}-1\right)}=\int \frac{d u}{u-1}-\int \frac{d u}{u+1} \\
=\log (u-1)-\log (u+1)=\log \frac{u-1}{u+1}=\log \frac{\sqrt{1+e^{x}}-1}{\sqrt{1+e^{x}}+1} .
\end{gathered}
$$

5. $\int_{0}^{\infty} e^{-x} d x$

Solution.

$$
\int_{0}^{\infty} e^{-x} d x=\lim _{X \rightarrow \infty}-\left.e^{-x}\right|_{0} ^{X}=\lim _{X \rightarrow \infty} e^{-0}-e^{-X}=1
$$

Or using a shorter and less precise notation, but good enough -

$$
\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=e^{-0}-e^{-\infty}=1
$$

Problem 4. Agents of the CSIS have secretly developed a function $e(x)$ that has the following properties:

- $e(x+y)=e(x) e(y)$ for all $x, y \in \mathbb{R}$.
- $e(0)=1$
- e is differentiable at 0 and $e^{\prime}(0)=1$.

Prove the following:

1. e is everywhere differentiable and $e^{\prime}=e$.
2. $e(x)=e^{x}$ for all $x \in \mathbb{R}$. The only lemma you may assume is that if a function f satisfies $f^{\prime}(x)=0$ for all x then f is a constant function.

Solution.

1. The given fact that $1=e^{\prime}(0)$ means that $1=\lim _{h \rightarrow 0} \frac{e(h)-e(0)}{h}=\lim _{h \rightarrow 0} \frac{e(h)-1}{h}$. Hence, using $e(x+h)=e(x) e(h)$ we get

$$
\lim _{h \rightarrow 0} \frac{e(x+h)-e(x)}{h}=\lim _{h \rightarrow 0} \frac{e(x) e(h)-e(x)}{h}=e(x) \lim _{h \rightarrow 0} \frac{e(h)-1}{h}=e(x) .
$$

This proves both that e is differentiable at x and that $e^{\prime}(x)=e(x)$.
2. Consider $q(x)=e(x) e^{-x}$. Differentiating we get

$$
q^{\prime}(x)=e^{\prime}(x) e^{-x}+e(x)\left(e^{-x}\right)^{\prime}=e(x) e^{-x}-e(x) e^{-x}=0
$$

Hence $q(x)$ is a constant function. But $q(0)=e(0) e^{0}=1 \cdot 1=1$, hence this constant must be 1. So $e(x) e^{-x}=1$ and thus $e(x)=e^{x}$.

Problem 5.

1. Prove that if a sequence of continuous functions f_{n} converges uniformly to a function f on some interval $[a, b]$, then f is continuous on $[a, b]$.
2. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}} \sin \left(3^{n} x\right)$ converges on $(-\infty, \infty)$ and that its sum is a continuous function of x.

Solution.

1. See Spivak's Theorem 2 of Chapter 24.
2. $\left|\frac{1}{2^{n}} \sin \left(3^{n} x\right)\right| \leq \frac{1}{2^{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges. Hence by the Weierstrass M-Test the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}} \sin \left(3^{n} x\right)$ converges uniformly. As each of the terms $\frac{1}{2^{n}} \sin \left(3^{n} x\right)$ is continuous, the first part of this question implies that so is the sum.

Problem 6. Prove that the complex function $z \mapsto \bar{z}$ is everywhere continuous but nowhere differentiable.
Solution. The key point is that $|w|=|\bar{w}|$ for every complex number w. Let $\epsilon>0$ and set $\delta=\epsilon$. Now if $\left|z-z_{0}\right|<\delta$ then $\left|\bar{z}-\bar{z}_{0}\right|=\left|\overline{z-z_{0}}\right|=\left|z-z_{0}\right|<\delta=\epsilon$. This proves the continuity of $z \mapsto \bar{z}$. Let us check if this function is differentiable:

$$
\lim _{h \rightarrow 0} \frac{\overline{z+h}-\bar{z}}{h}=\lim _{h \rightarrow 0} \frac{\bar{z}+\bar{h}-\bar{z}}{h}=\lim _{h \rightarrow 0} \frac{\bar{h}}{h} .
$$

If we restrict our attention to real h then the latter quotient is always 1 , so the limit would be 1. If we restrict our attention to imaginary $h, h=i y$ with real y, then that quotient is $\frac{\bar{h}}{h}=\frac{-i y}{i y}=-1$ so the limit would be -1 . Hence the limit cannot exist and $z \mapsto \bar{z}$ is not differentiable at (an arbitrary) z.
The results. 76 students took the exam; the average grade was $72.66 / 120$, the median was $71.5 / 120$ and the standard deviation was 25.5 . The overall grade average for the course (of $\left.X=0.05 T_{1}+0.15 T_{2}+0.1 T_{3}+0.1 T_{4}+0.2 H W+0.4 \cdot 100(F / 120)\right)$ was 66.92 , the median was 64.9 and the standard deviation was 17.16. Finally, the transformation $X \mapsto 100(X / 100)^{\gamma}$ was applied to the grades, with $\gamma=0.82$. This made the average grade 71.55 , the median 70 and the standard deviation 15.31. There were 25 A's (grades above 80) and 5 failures (grades below 50).

