Dror Bar-Natan: Classes: 2002-03: Math 157 - Analysis I:

Homework Assignment 22

Assigned Tuesday March 11; due Friday March 21, 2PM at SS 1071
web version: http://www.math.toronto.edu/~ drorbn/classes/0203/157AnalysisI/HW22/HW22.html
Required reading. All of Spivak Chapter 23. Also read (but don't do!) all exercises for that chapter - just to get an impression for how intricate the various convergence tests and criteria can get.
To be handed in. From Spivak Chapter 23: 1 (parts divisible by 4), 12, 23 as well as the following question:

- Prove that the following sums diverge: (Hint: Use problem 20.)

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n} ; \quad \sum_{n=2}^{\infty} \frac{1}{n(\log n)} ; \quad \sum_{n=3}^{\infty} \frac{1}{n(\log n)(\log \log n)} ; \\
\sum_{n=16}^{\infty} \frac{1}{n(\log n)(\log \log n)(\log \log \log n)} ; \quad \cdots
\end{gathered}
$$

- Prove that the following sums converge: (Hint: Use problem 20.)

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n^{1.01}} ; \quad \sum_{n=2}^{\infty} \frac{1}{n(\log n)^{1.01}} ; \quad \sum_{n=3}^{\infty} \frac{1}{n(\log n)(\log \log n)^{1.01}} ; \\
\sum_{n=16}^{\infty} \frac{1}{n(\log n)(\log \log n)(\log \log \log n)^{1.01}} ; \quad \cdots
\end{gathered}
$$

Recommended for extra practice. From Spivak Chapter 23: 1 (the rest), 5, 20, 21 as well as the following question:

- In this question we always assume that $a_{n}>0$ and $b_{n}>0$. Let's say that a sequence a_{n} is "much bigger" than a sequence b_{n} if $\lim _{n \rightarrow \infty} a_{n} / b_{n}=\infty$. Likewise let's say that a sequence a_{n} is "much smaller" than a sequence b_{n} if $\lim _{n \rightarrow \infty} a_{n} / b_{n}=0$. Prove that for every convergent series $\sum b_{n}$ there is a much bigger sequence a_{n} for which $\sum a_{n}$ is also convergent, and that for every divergent series $\sum b_{n}$ there is a much smaller sequence a_{n} for which $\sum a_{n}$ is also divergent. (Thus you can forever search in vain for that fine line between good and evil; it just isn't there).

