Chapter 4
3. Draw the set of all point $(\mathrm{x}, \mathrm{y})$ satisfying the following conditions.
ii) $x+a>y+b$

iv) $y \leq x^{2}$

vi) $|x+y|<1$

viii) $\left(\frac{1}{x+y}\right)$ is an integer.

x) $x^{2}<y<x^{4}$


Notes: the border is not included, neither the portion between $(-1,1)$ and $(1,1)$.
7. (a) For any numbers A, B and C, with A and B not both 0 , show that the set of all (x,y) satisfying $A x+B y+C=0$ is a straight line (possibly a vertical one).

Proof:
If $B \neq 0$, then $A x+B y+C=0 \Leftrightarrow y=-\frac{A}{B} x-C$. Obviously, it is a straight line.
If $B=0$, then $A x+B y+C=0 \Leftrightarrow x=\frac{C}{A}$, which is also a straight line (vertical).
QED
(b) Show conversely that every straight line, including vertical ones, can be described as the set of all (x, y) satisfying $A x+B y+C=0$.

Proof:
For any vertical straight line, it must be like $x=x_{0} \quad x_{0} \in \mathfrak{R}$. Then let

$$
A=-1, B=0, C=x_{0}, \text { we have }-x+0+x_{0}=0 \Leftrightarrow A x+B y+C=0
$$

If a line is not straight, it could be written in an equation like
$y=k x+b, \quad$ where $k, b \in \mathfrak{R}$, then let $A=k, B=-1, C=b$, obviously,
$k x-y+b=0 \Leftrightarrow A x+B y+C=0$
QED
9. (a) Prove, using problem 1-19, that

$$
\sqrt{\left(x_{1}+y_{1}\right)^{2}+\left(x_{2}+y_{2}\right)^{2}} \leq \sqrt{x_{1}^{2}+x_{2}^{2}}+\sqrt{y_{1}^{2}+y_{2}^{2}}
$$

Proof:
$\sqrt{\left(x_{1}+y_{1}\right)^{2}+\left(x_{2}+y_{2}\right)^{2}} \leq \sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}}+\sqrt{y_{1}^{2}+y_{2}{ }^{2}}$
$\Leftrightarrow\left(x_{1}+y_{1}\right)^{2}+\left(x_{2}+y_{2}\right)^{2} \leq\left(\sqrt{x_{1}^{2}+x_{2}^{2}}+\sqrt{y_{1}^{2}+y_{2}^{2}}\right)^{2} \Leftrightarrow$
$x_{1}^{2}+2 x_{1} y_{1}+y_{1}^{2}+x_{2}^{2}+2 x_{2} y_{2}+y_{2}^{2} \leq x_{1}^{2}+x_{2}^{2}+y_{1}^{2}+y_{2}^{2}+2 \sqrt{x_{1}^{2}+x_{2}{ }^{2}} \times \sqrt{y_{1}^{2}+y_{2}^{2}}$
$\Leftrightarrow 2 x_{1} y_{1}+2 x_{2} y_{2} \leq 2 \sqrt{x_{1}^{2}+x_{2}^{2}} \times \sqrt{y_{1}^{2}+y_{2}^{2}}$
$\Leftrightarrow x_{1} y_{1}+x_{2} y_{2} \leq \sqrt{x_{1}^{2}+x_{2}^{2}} \times \sqrt{y_{1}^{2}+y_{2}^{2}}$
Which was proved previously in problem 1-19. QED.
14. Describe the graph of $g$ in terms of the graph of $f$ if
ii) $g(x)=f(x+c)$, which means move graph $\mathrm{f}(\mathrm{x}) \mathrm{c}$ units to the left.


Suppose the dashed line is the graph of $f$, then the graph of $g$ shows as above. Noticed that $g(-c)=f(-c+c)=f(0)$
iv) $g(x)=f(c x)$, if $\mathrm{c}>0$, it means scaling the graph along the x -axis to (1/c) time.

if $\mathrm{c}<0$, it means scaling the graph along the x -axis to (1/c) time and reversing it according to $y$-axis.

if $c=0$, it means a fixed value of $f(0)$.

vi) $g(x)=f(|x|)$, it means getting rid of left side of the graph and reversing the right side according to y -axis.

viii) $g(x)=\max (f, 0)$, it means getting rid of the negative y and replacing it with 0 .

x) $g(x)=\max (f, 1)$ it means getting rid of any $\mathrm{y}<1$ and replacing it with 1 .


