Chapter 6

1. For which of the following functions f is there a continuous function F with domain
\mathfrak{R} such that $F(x)=f(x)$ for all x in the domain of f ?
I. $f(x)=\frac{x^{2}-4}{x-2}$, Yes. There is such a function $g(x)=x+2$
II. $\quad f(x)=\frac{|x|}{x}$, No. Cause $\lim _{x \rightarrow 0^{+}} f \neq \lim _{x \rightarrow 0^{-}} f$
III. $f(x)=0, \quad x$ irrational . Yes, there is such a function $g(x)=0$
IV. $f(x)=\frac{1}{q}, x=\frac{p}{q}$ rational in lowest terms. No. cause $\lim _{x \rightarrow a} f(x) \neq f(a)$
2. (a) suppose that f is a function satisfying $|f(x)| \leq|x|$ for all x. Show that f is continuous at 0 .
Solution:

$$
\begin{aligned}
& \because|f(x)| \geq 0 \Rightarrow|f(0)| \geq 0 \\
& \text { also }|f(x)| \leq|x| \Rightarrow|f(0)| \leq|0|=0 \\
& \therefore|f(0)|=0 \Leftrightarrow f(0)=0 \\
& \because|f(x)| \leq|x| \Leftrightarrow-|x| \leq f(x) \leq|x| \\
& \text { since we know } \lim _{x \rightarrow 0}|x|=0, \lim _{x \rightarrow 0}(-|x|)=0
\end{aligned}
$$

from a problem which we solved previously, if $g(x) \leq f(x) \leq h(x)$ and $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)$, then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)$
$\therefore \lim _{x \rightarrow 0} f(x)=0=f(0)$, it's continuous at 0 .
Q.E.D
(b) Give an example of such a function f which is not continuous at any $a \neq 0$.

Let $f(x)=\left\{\begin{array}{l}x=\frac{x}{2} \quad x \text { irrational } \\ x=-\frac{x}{2} \quad x \text { rational }\end{array} \quad(x \neq 0)\right.$
Obviously, it's not continuous at any $x \neq 0$
(c) Suppose that g is continuous at 0 and $g(0)=0$, and $|f(x)| \leq|g(x)|$. Prove that f is
continuous at 0 .
Solution:
Same as (a), $|f(x)| \leq|g(x)| \Leftrightarrow-|g(x)| \leq f(x) \leq|g(x)|$
g is continuous at 0 and $g(0)=0 \Leftrightarrow \lim _{x \rightarrow 0} g(x)=0 \Leftrightarrow \lim _{x \rightarrow 0}|g(x)|=\lim _{x \rightarrow 0}-|g(x)|=0$
$\therefore \lim _{x \rightarrow 0} f(x)=0$
Also, $\left.\begin{array}{l}|f(x)| \leq|g(x)| \Leftrightarrow|f(0)| \leq|g(0)|=0 \\ |f(x)| \geq 0\end{array}\right\} \Rightarrow|f(x)|=0 \Leftrightarrow f(x)=0$
$\therefore \lim _{x \rightarrow 0} f(x)=0=f(0)$, it's continuous at 0 .
12. (a) Prove that if f is continuous at l and $\lim _{x \rightarrow a} g(x)=l$, then $\lim _{x \rightarrow a} f(g(x))=f(l)$.

Solution:
Construct a function G with $G(x)=g(x)$ for $x \neq a$, and $G(a)=l$
$\lim _{x \rightarrow a} g(x)=l \Rightarrow \lim _{x \rightarrow a} G(x)=l$
$\therefore \lim _{x \rightarrow a} G(x)=G(a), \mathrm{G}$ is continuous at a.
f is continuous at l and G is continuous at a. $\Rightarrow \lim _{x \rightarrow a} f(G(x))=f(G(a))=f(l)$
$\because G(x)=g(x)$ for $x \neq a \Rightarrow \lim _{x \rightarrow a} f(G(x))=\lim _{x \rightarrow a} f(g(x))$
$\therefore \lim _{x \rightarrow a} f(g(x))=f(l)$
(b) Show that if continuity at l is not assumed, then it is not generally true that $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$.

For example:
Let $f(x)=0$ for $x \neq l$, and $f(l)=1$, then obviously, for any $a \in \mathfrak{R}, \lim _{x \rightarrow a} f(x)=0$
$\therefore \lim _{x \rightarrow a} f(g(x))=0$

On the other hand, $f\left(\lim _{x \rightarrow a} g(x)\right)=f(l)=1$
$\therefore \lim _{x \rightarrow a} f(g(x))$ is not necessary to be equal to $f\left(\lim _{x \rightarrow a} g(x)\right)$.
14. (a) Suppose that g and h are continuous at a, and that $g(a)=h(a)$. Define $f(x)$ to be $g(x)$ if $x \geq a$ and $h(x)$ if $x \leq a$. Prove that $f(x)$ is continuous at a.

Prove:

First of all, obviously, $f(a)=g(a)=h(a)$

On the other hand, g and h are continuous at a $\Rightarrow \lim _{x \rightarrow a} h(x)=\lim _{x \rightarrow a} g(x)=g(a)=h(a)$ From the definition, we know

$$
\begin{equation*}
\forall \varepsilon>0, \exists \delta_{h}>0, \text { s.t. for } 0<|x-a|<\delta_{h},|h(x)-h(a)|<\varepsilon \tag{1}
\end{equation*}
$$

also: $\forall \varepsilon>0, \exists \delta_{g}>0$, s.t. for $0<|x-a|<\delta_{g},|g(x)-g(a)|<\varepsilon$
Let $\delta=\min \left(\delta_{h}, \delta_{g}\right)$
from (2), for $0<x-a<\delta$, we know $|f(x)-f(a)|=|g(x)-g(a)|<\varepsilon$,
from (1), for $0>x-a>-\delta$, we know $|f(x)-f(a)|=|h(x)-h(a)|<\varepsilon$,
that is: $\forall \varepsilon>0, \exists \delta>0$, s.t. for $0<|x-a|<\delta,|f(x)-f(a)|<\varepsilon$
$\therefore \lim _{x \rightarrow a} f(x)=f(a)$, it is continuous at point a.
(b) Suppose g is continuous on $[a, b]$ and h is continuous on $[b, c]$ and $g(b)=h(b)$. Let $f(x)$ be $g(x)$ for x in $[a, b]$ and $h(x)$ for x in $[b, c]$. Show that f is continuous on $[a, c]$.

Prove:
Obviously, $f(b)=g(b)=h(b)$

On the other hand, g and h are continuous at $\mathrm{b} \Rightarrow \lim _{x \rightarrow b} h(x)=\lim _{x \rightarrow b} g(x)=g(b)=h(b)$ From the definition, we know

$$
\begin{equation*}
\forall \varepsilon>0, \exists \delta_{h}>0, \text { s.t. for } 0<|x-b|<\delta_{h},|h(x)-h(b)|<\varepsilon \tag{1}
\end{equation*}
$$

also: $\forall \varepsilon>0, \exists \delta_{g}>0$, s.t. for $0<|x-b|<\delta_{g},|g(x)-g(b)|<\varepsilon$
Let $\delta=\min \left(\delta_{h}, \delta_{g}\right)$
from (1), for $0<x-b<\delta$, we know $|f(x)-f(b)|=|h(x)-h(b)|<\varepsilon$,
from (2), for $0>x-b>-\delta$, we know $|f(x)-f(b)|=|g(x)-g(b)|<\varepsilon$,
that is: $\forall \varepsilon>0, \exists \delta>0$, s.t. for $0<|x-b|<\delta,|f(x)-f(b)|<\varepsilon$
$\therefore \lim _{x \rightarrow b} f(x)=f(b)$, it is continuous at point b .
it's obviously that $f(x)$ is continuous at anywhere else on [a, c]. Q.E.D.

