
Chapter 6 

1. For which of the following functions f is there a continuous function F with domain 

ℜ such that )()( xfxF = for all x in the domain of f ? 
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3.  (a) suppose that f is a function satisfying xxf ≤)(  for all x. Show that f is continuous 

at 0. 
 Solution: 
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 from a problem which we solved previously, if )()()( xhxfxg ≤≤ and 
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, it’s continuous at 0. 

 Q.E.D 

 (b) Give an example of such a function f  which is not continuous at any 0≠a . 
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Obviously, it’s not continuous at any 0≠x  

(c) Suppose that g is continuous at 0 and 0)0( =g , and )()( xgxf ≤ . Prove that f is 



continuous at 0. 
 Solution: 

 Same as (a), )()()()()( xgxfxgxgxf ≤≤−⇔≤  
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, it’s continuous at 0. 

12. (a) Prove that if f is continuous at l and lxg
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   Solution: 

 Construct a function G with laGandaxforxgxG =≠= )(,)()(  
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   (b) Show that if continuity at l  is not assumed, then it is not generally true that 
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14. (a) Suppose that g and h are continuous at a, and that )()( ahag = . Define )(xf to be 

)(xg  if ax ≥ and )(xh  if ax ≤ . Prove that )(xf  is continuous at a. 

 Prove: 



 First of all, obviously, )()()( ahagaf ==  

 On the other hand, g and h are continuous at a )()()(lim)(lim ahagxgxh
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 From the definition, we know  

  εδδε <−<−<>∃>∀ )()(,0..,0,0 ahxhaxforts hh  (1) 

 also: εδδε <−<−<>∃>∀ )()(,0..,0,0 agxgaxforts gg  (2) 

 Let ( )gh δδδ ,min=  

 from (2), εδ <−=−<−< )()()()(,0 agxgafxfknowweaxfor ,  

 from (1), εδ <−=−−>−> )()()()(,0 ahxhafxfknowweaxfor , 

 that is: εδδε <−<−<>∃>∀ )()(,0..,0,0 afxfaxforts  

 )()(lim afxf
ax

=∴
→

, it is continuous at point a. 

   (b) Suppose g is continuous on [ ]ba,  and h is continuous on [ ]cb,  and )()( bhbg = . Let 

)(xf  be )(xg  for [ ]bainx , and )(xh  for [ ]cbinx , . Show that f is continuous 

on [ ]ca, . 

 Prove: 

 Obviously, )()()( bhbgbf ==  
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 From the definition, we know  

  εδδε <−<−<>∃>∀ )()(,0..,0,0 bhxhbxforts hh  (1) 

 also: εδδε <−<−<>∃>∀ )()(,0..,0,0 bgxgbxforts gg  (2) 

 Let ( )gh δδδ ,min=  

 from (1), εδ <−=−<−< )()()()(,0 bhxhbfxfknowwebxfor ,  

 from (2), εδ <−=−−>−> )()()()(,0 bgxgbfxfknowwebxfor , 

 that is: εδδε <−<−<>∃>∀ )()(,0..,0,0 bfxfbxforts  
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, it is continuous at point b. 



 it’s obviously that )(xf  is continuous at anywhere else on [a, c].  Q.E.D. 


