Charpter 8

1, (ii) $\left\{\frac{1}{n}: n\right.$ in Z and $\left.n \neq 0.\right\}$
The least upper bound: 1 , the greatest element: 1 ;
The greatest lower bound: 0 , no least element.
(iv) $\{x: 0 \leq x \leq \sqrt{2}$ and x is rational. $\}$

The least upper bound: $\sqrt{2}$, no greatest element;
The greatest lower bound: 0 , the least element: 0 .
(vi) $\left\{x: x^{2}+x-1<0\right\}$

The least upper bound: $\frac{-1+\sqrt{5}}{2}$, no greatest element;

The greatest lower bound: $\frac{-1-\sqrt{5}}{2}$, no least element.
(viii) $\left\{\frac{1}{n}+(-1)^{n}: n\right.$ in $\left.N.\right\}$

The least upper bound: $\frac{3}{2}$, the greatest element: $\frac{3}{2}$;
The greatest lower bound: -1 , no least element.
6, Proof:
(a) We assume that: $\exists x_{0}$ s.t. $f\left(x_{0}\right)=a \neq 0$.
$\because \quad f$ is contionous,
$\therefore \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)=a$
From the definition of limit, we know:
$\exists \boldsymbol{\delta}_{0}>0$, s.t. $\forall x: 0<\left|x-x_{0}\right|<\delta_{0},|f(x)-a|<\frac{|a|}{2}$
$|f(x)-a|<\frac{|a|}{2} \Rightarrow|f(x)| \geq \frac{|a|}{2}>0, a \neq 0 \Rightarrow f(x) \neq 0$,
also $f\left(x_{0}\right) \neq 0$

Then: $\exists \delta_{0}>0$, s.t. $\forall x: x_{0}-\delta_{0}<x<x_{0}+\delta_{0}, f(x) \neq 0$

On the other hand, because A is a dense set, then $\exists x_{a}$ in $\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$, s.t. $x_{a} \in A$, It
means: $f\left(x_{a}\right)=0$, which is conflict with $\left({ }^{*}\right)$, Q.E.D.
(b) Let $h(x)=f(x)-g(x)$, apply the conclusion of (a) to $h(x)$, we know $h(x)=0$ for all x, which means $f(x)=g(x)$ for all x. Q.E.D
(c) Likewise, let $h(x)=f(x)-g(x)$, then $h(x)$ is continuous and $h(x) \geq 0, \forall x \in A$. We assume that: $\exists x_{0}$, s.t. $h\left(x_{0}\right)=a<0$, then $\lim _{x \rightarrow x_{0}} h(x)=h\left(x_{0}\right)=a<0$.
$\therefore \exists \delta_{0}>0$, s.t. $\forall x: 0<\left|x-x_{0}\right|<\delta_{0},|h(x)-a|<\frac{|a|}{2}$
$|h(x)-a|<\frac{|a|}{2} \Rightarrow 0>\frac{a}{2} \geq h(x) \geq \frac{3 a}{2}, a<0 \Rightarrow h(x)<0$
also $h\left(x_{0}\right)<0$
Then: $\exists \delta_{0}>0$, s.t. $\forall x: x_{0}-\delta_{0}<x<x_{0}+\delta_{0}, h(x)<0$
On the other hand, because A is a dense set, then $\exists x_{a}$ in $\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$, s.t. $x_{a} \in A$, it means $h\left(x_{a}\right) \geq 0$, which is conflict with (*), Q.E.D.
\geq can not be replaced by < throughout, cause even if $h(x)>0, \forall x \in A$, it is still a chance that $\lim h(x)=0$.

8, Proof:
(a) Considering with interval $(-\infty, a)$, since $f(a) \leq f(b)$, whenever $a<b$, then for every $\quad x \in(-\infty, a), f(x) \leq f(a)$, we can say $f(x)$ is bounded above at $(-\infty, a)$. From P13, we know there must exist a least upper bound of $f(x)$, let name it as K, obviously, $\quad K \leq f(a)$. Now, we prove that $\lim _{x \rightarrow a-} f(x)=K$
K is a least upper bound, which means $\forall \varepsilon>0, \exists x_{0}<a$, s.t. $K-f\left(x_{0}\right)<\varepsilon$, then
Let $\delta=a-x_{0}$, obviously, $\delta>0$, and $\forall x \in(a-\delta, a),|f(x)-K|=K-f(x)$
$\because f(a) \leq f(b)$, when $a<b \Rightarrow f(x) \geq f(a-\delta)$, when $x \in(a-\delta, a)$
$\therefore K-f(x) \leq K-f(a-\delta)=K-f\left(a-a-x_{0}\right)=K-f\left(x_{0}\right)<\varepsilon$
$\therefore \exists \delta=a-x_{0}>0$, s.t. $\forall x \in(a-\delta, a),|K-f(x)|<\varepsilon$, which means:
$\lim _{x \rightarrow a-} f(x)=K$
Likewise, considering with interval $(a, \infty), f(x)$ has a greatest lower bound K^{\prime}, such that $\lim _{x \rightarrow a+} f(x)=K^{\prime}$
(b) Assume that f has a removable discontinuity, then: $\lim _{x \rightarrow a} f(x)=K \neq f(a)$. Which means: $\quad \lim _{x \rightarrow a-} f(x)=\lim _{x \rightarrow a+} f(x)=K \quad, \quad$ from above we know: $\lim _{x \rightarrow a-} f(x) \leq f(a) \leq \lim _{x \rightarrow a+} f(x)$

Which means $K \leq f(a) \leq K \Leftrightarrow f(a)=K=\lim _{x \rightarrow a} f(x) \Rightarrow \Leftarrow$ Q.E.D
(c) f satisfies the conclusions of the Intermediate Value Theorem, which means that:
$\forall y \in(f(a), f(b)), \exists x \in[a, b]$ s.t. $f(x)=y$
From (a), we know: $\forall c \in[a, b]$, both $\lim _{x \rightarrow c-} f(x)$ and $\lim _{x \rightarrow c+} f(x)$ exists . Let $\lim _{x \rightarrow c-} f(x)=K_{c}$ and $\lim _{x \rightarrow c+} f(x)=K_{c}^{\prime}$.

Assume that $K_{c} \neq K_{c}^{\prime}$, then:
from (a), we know: $f(a) \leq K_{c} \leq f(c) \leq K_{c}^{\prime} \leq f(b)$, then:
$K_{c} \neq K_{c}^{\prime} \Rightarrow K_{c}^{\prime}>K_{c}$, let $\delta=K_{c}^{\prime}-K_{c}$, obviously, $\delta>0$, also, $\frac{\delta}{3}>0$
$\therefore f(a) \leq K_{c}<K_{c}+\frac{\delta}{3}<K_{c}^{\prime}-\frac{\delta}{3}<K_{c}^{\prime} \leq f(b)$,
let $y_{1}=K_{c}+\frac{\delta}{3}, y_{2}=K_{c}^{\prime}-\frac{\delta}{3}$, then:
$\because y_{1}>K_{c}$ and K_{c} is a upper bound of set $\{f(x): x \in[a, c)\}$
$\therefore y_{1} \notin\{f(x): x \in[a, c)\}$
$\because y_{1}<K_{c}^{\prime}$ and K_{c}^{\prime} is a lower bound of set $\{f(x): x \in(c, b]\}$
$\therefore y_{1} \notin\{f(x): x \in(c, b]\}$
$\therefore y_{1} \notin\{f(x): x \in[a, b], x \neq c\}$

Likewise, $y_{2} \notin\{f(x): x \in[a, b], x \neq c\}$, and $y_{1} \neq y_{2}$
Noticed that $y_{1}, y_{2} \in[f(a), f(b)]$ and $f(c)=y_{1}, f(c)=y_{2}$ can not be true at the same time, then:
$\exists y_{0}\left(y_{0}=y_{1}\right.$ or $\left.y_{2}\right)$, s.t. $y_{0} \in[f(a), f(b)]$ but $y_{0} \notin\{f(x): x \in[a, b]\}$,
which is conflict with (*) above.
Then, K_{c} has to be equal to K_{c}^{\prime}. From (b) above, we know: if $K_{c}^{\prime}=K_{c}$, then $\lim _{x \rightarrow c} f(x)=K=f(c)$, Q.E.D

13, Proof:
Since $\quad x \leq \sup (A)$, and $y \leq \sup (B) \Rightarrow x+y \leq \sup (A)+\sup (B) \quad$, then $\sup (A)+\sup (B)$ is an upper bound of $x+y$. Thus, $\sup (x+y) \leq \sup (A)+\sup (B)$

On the other hand, $\because \forall \varepsilon>0, \exists x$, s.t. $\sup (A)-x<\frac{\varepsilon}{2}$, likewise, $\exists y$, s.t. $\sup (B)-y<\frac{\varepsilon}{2}$
$\therefore \exists x+y$, s.t. $\forall \varepsilon>0, \sup (A)+\sup (B)-(x+y)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$
$\Leftrightarrow \sup (A)+\sup (B)-\varepsilon<(x+y) \leq \sup (A+B)$
Q.E.D.

