Dror Bar-Natan: Classes: 2002-03: Math 157 - Analysis I:

Math 157 Analysis I - Solution of Term Exam 1

web version:
http://www.math.toronto.edu/~drorbn/classes/0203/157AnalysisI/TermExam1/Solution.html

Problem 1.

1. Prove directly from the postulates for the real numbers and from the relevant definitions that if $a, b \geq 0$ and $a^{2}<b^{2}$, then $a<b$. If you plan to use a formula such as $b^{2}-a^{2}=(b-a)(b+a)$ you don't need to prove it, but of course you have to be very clear about how it is used.
2. Use induction to prove that any integer n can be written in exactly one of the following two forms: $n=2 k$ or $n=2 k+1$, where k is also an integer.
3. Prove that there is no rational number r such that $r^{3}=2$.

Solution.

1. If $a=0$ then $a^{2}<b^{2}$ means that $0<b^{2}$ and therefore $b \neq 0$. Along with $a \geq 0, b \geq 0$ and P11, it follows that $b+a>0$. If $a>0$ then again along with $b \geq 0$ and P11 we get that $b+a>0$, so in either case $b+a>0$ is assured. Now $a^{2}<b^{2}$ is by definition the same as $b^{2}-a^{2}>0$, and therefore

$$
\begin{equation*}
(b-a)(b+a)>0 . \tag{1}
\end{equation*}
$$

Had $(b-a)$ been negative, then $-(b-a)$ would have been positive and by $b+a>0$ and P12 we'd have that $-(b-a)(b+a)>0$, contradicting Equation (1). Hence $(b-a)$ is positive, and this by definition means that $b>a$.
2. First we show using induction that every natural number (positive integer) n can be written in at least one of the forms $n=2 k$ or $n=2 k+1$ for an integer k. Indeed, for $n=1$ we write $1=2 \cdot 0+1$ as required. Now if n is of the form $2 k$ for an integer k, then $n+1=2 k+1$ is of the second allowed form, and if n is of the form $2 k+1$ for some integer k then $n+1=2 k+1+1=2(k+1)$ is of the first allowed form, for $k+1$ is also an integer. Therefore if n can be written in either of the required forms then so is $n+1$, and the inductive proof is completed.
Let's deal with 0 and with the negative integers now. First, $0=2 \cdot 0$ so 0 is of the form $2 k$. Next, if $n<0$ is an integer, then $(-n)$ is a positive integer and therefore $(-n)=2 k$ or $(-n)=2 k+1$. In the former case, $n=2(-k)$ and we are done. In the latter case, $n=2(-k)-1=2(-k-1)+1$ and again we are done.
Finally, an integer cannot be of both forms at the same time, for if we could write $n=2 k_{1}$ and $n=2 k_{2}+1$ with integer k_{1} and k_{2}, then we'd have that $2 k_{1}=2 k_{2}+1$, which is $2\left(k_{1}-k_{2}\right)=1$. But $k_{1}-k_{2}$ is an integer and it is easy to show that 1 is not twice an integer.

Having said all that, we can call the integers of the form $2 k$ "even" and the integers of the form $2 k+1$ "odd", and then every integer is either even or odd but never both.
3. First, $(2 k+1)^{3}=8 k^{3}+12 k^{2}+6 k+1=2\left(4 k^{3}+6 k^{2}+3 k\right)+1$ and hence if n is odd then so is n^{3}. Therefore if n^{3} is even then so is n. Now assume by contradiction that there is some rational number r with $r^{3}=2$ and write $r=p / q$ where p and q are integers and q is the least positive integer for which it is possible to present r in this form. Now $r^{3}=p^{3} / q^{3}=2$ hence $p^{3}=2 q^{3}$ is even hence p is even hence we can find an integer k with $p=2 k$. But then $p^{3}=2 q^{3}$ becomes $8 k^{3}=2 q^{3}$ and hence $q^{3}=2\left(2 k^{3}\right)$ so q^{3} is even and hence so is q, so $q=2 l$ for some positive l (which of course is smaller than q itself). But now $r=p / q=2 k / 2 l=k / l$ contradicting the minimality of q. Therefore there is no rational number r with $r^{3}=2$.

Problem 2.

1. Suppose $f(x)=x+1$. Are there any functions g such that $f \circ g=g \circ f$?
2. Suppose that f is a constant function. For which functions g does $f \circ g=g \circ f$?
3. Suppose that $f \circ g=g \circ f$ for all functions f. Show that g is the identity function $g(x)=x$.

Solution.

1. Yes. For example, the identity function $g(x)=x$ has this property.
2. Suppose $f(x)=c$ for all x. Then $f \circ g=g \circ f$ if and only if $\forall x(f \circ g)(x)=(g \circ f)(x)$ iff $\forall x f(g(x))=g(f(x))$ iff $\forall x c=g(c)$ iff $c=g(c)$. So g satisfies $f \circ g=g \circ f$ iff $g(c)=c$.
3. If $f \circ g=g \circ f$ for all functions f then in particular $f \circ g=g \circ f$ for all constant functions $f(x)=c$. But then by the previous part for all constant c we have $g(c)=c$ and this precisely means that g is the identity function $g(x)=x$.

Problem 3. Sketch, to the best of your understanding, the graph of the function

$$
f(x)=x^{2}-\frac{1}{x^{2}} .
$$

(What happens for x near 0 ? For large x ? Where does the graph lie relative to the graph of the function $y=x^{2}$?)
Solution. The first graph below shows x^{2} (above the x axis) and $-1 / x^{2}$ (below the x axis. The second shows the sum of the two, the desired function $x^{2}-1 / x^{2}$:

For x near 0 our function goes to $-\infty$, for large x it goes to $+\infty$. It is always below x^{2} but for large x it is very near x^{2}.
Problem 4. Write the definition of $\lim _{x \rightarrow a} f(x)=l$ and give examples to show that the following definitions of $\lim _{x \rightarrow a} f(x)=l$ do not agree with the standard one:

1. For all $\delta>0$ there is an $\epsilon>0$ such that if $0<|x-a|<\delta$, then $|f(x)-l|<\epsilon$.
2. For all $\epsilon>0$ there is a $\delta>0$ such that if $|f(x)-l|<\epsilon$, then $0<|x-a|<\delta$.

Solution. The definition is: For every $\epsilon>0$ there is a $\delta>0$ so that whenever $0<|x-a|<\delta$ we have that $|f(x)-l|<\epsilon$. The required examples:

1. This is satisfied whenever $|f|$ is bounded and regardless of its limit. Indeed, choose ϵ bigger than $|l|+M$ where M is a bound on $|f|$, and $|f(x)-l|<\epsilon$ is always true.
2. According to this definition, for example, $\lim _{x \rightarrow a} c=c$ is false, and hence it cannot be equivalent to the standard definition. Indeed, in this case $|f(x)-l|<\epsilon$ means $0=|c-c|<\epsilon$. This imposes no condition on x, so $|x-a|$ need not be smaller than δ.

Problem 5. Suppose that g is continuous at 0 and $g(0)=0$ and that $|f(x)| \leq \sqrt{|g(x)|}$ for all x. Show that f is continuous at 0 .
Solution. At $x=0$ the inequality $|f(x)| \leq \sqrt{|g(x)|}$ reads $|f(0)| \leq \sqrt{|g(0)|}=\sqrt{|0|}=0$, and hence $f(0)=0$. We claim that $\lim _{x \rightarrow 0} f(x)=0$ and hence that f is continuous at 0 . Indeed let $\epsilon>0$ be given. Then $\epsilon^{2}>0$ and by the continuity of g at 0 we can find a $\delta>0$ so that whenever $|x|<\delta$ we have that $|g(x)|<\epsilon^{2}$. But then if $|x|<\delta$ then $|f(x)| \leq \sqrt{|g(x)|}=\sqrt{\epsilon^{2}}=\epsilon$ and the definition of $\lim _{x \rightarrow 0} f(x)=0$ is satisfied.

