
Dror Bar-Natan: Classes: 2002-03: Math 157 - Analysis I:

Math 157 Analysis I — Solution of Term Exam 1
web version:

http://www.math.toronto.edu/˜drorbn/classes/0203/157AnalysisI/TermExam1/Solution.html

Problem 1.

1. Prove directly from the postulates for the real numbers and from the relevant definitions
that if a, b ≥ 0 and a2 < b2, then a < b. If you plan to use a formula such as
b2 − a2 = (b− a)(b + a) you don’t need to prove it, but of course you have to be very
clear about how it is used.

2. Use induction to prove that any integer n can be written in exactly one of the following
two forms: n = 2k or n = 2k + 1, where k is also an integer.

3. Prove that there is no rational number r such that r3 = 2.

Solution.

1. If a = 0 then a2 < b2 means that 0 < b2 and therefore b 6= 0. Along with a ≥ 0, b ≥ 0
and P11, it follows that b + a > 0. If a > 0 then again along with b ≥ 0 and P11 we
get that b + a > 0, so in either case b + a > 0 is assured. Now a2 < b2 is by definition
the same as b2 − a2 > 0, and therefore

(b− a)(b + a) > 0. (1)

Had (b − a) been negative, then −(b − a) would have been positive and by b + a > 0
and P12 we’d have that −(b−a)(b+a) > 0, contradicting Equation (1). Hence (b−a)
is positive, and this by definition means that b > a.

2. First we show using induction that every natural number (positive integer) n can be
written in at least one of the forms n = 2k or n = 2k + 1 for an integer k. Indeed, for
n = 1 we write 1 = 2 · 0 + 1 as required. Now if n is of the form 2k for an integer k,
then n + 1 = 2k + 1 is of the second allowed form, and if n is of the form 2k + 1 for
some integer k then n + 1 = 2k + 1 + 1 = 2(k + 1) is of the first allowed form, for k + 1
is also an integer. Therefore if n can be written in either of the required forms then so
is n + 1, and the inductive proof is completed.

Let’s deal with 0 and with the negative integers now. First, 0 = 2 · 0 so 0 is of the
form 2k. Next, if n < 0 is an integer, then (−n) is a positive integer and therefore
(−n) = 2k or (−n) = 2k + 1. In the former case, n = 2(−k) and we are done. In the
latter case, n = 2(−k)− 1 = 2(−k − 1) + 1 and again we are done.

Finally, an integer cannot be of both forms at the same time, for if we could write
n = 2k1 and n = 2k2 + 1 with integer k1 and k2, then we’d have that 2k1 = 2k2 + 1,
which is 2(k1 − k2) = 1. But k1 − k2 is an integer and it is easy to show that 1 is not
twice an integer.

Having said all that, we can call the integers of the form 2k “even” and the integers of
the form 2k + 1 “odd”, and then every integer is either even or odd but never both.
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3. First, (2k+1)3 = 8k3 +12k2 +6k+1 = 2(4k3 +6k2 +3k)+1 and hence if n is odd then
so is n3. Therefore if n3 is even then so is n. Now assume by contradiction that there
is some rational number r with r3 = 2 and write r = p/q where p and q are integers
and q is the least positive integer for which it is possible to present r in this form. Now
r3 = p3/q3 = 2 hence p3 = 2q3 is even hence p is even hence we can find an integer
k with p = 2k. But then p3 = 2q3 becomes 8k3 = 2q3 and hence q3 = 2(2k3) so q3 is
even and hence so is q, so q = 2l for some positive l (which of course is smaller than q
itself). But now r = p/q = 2k/2l = k/l contradicting the minimality of q. Therefore
there is no rational number r with r3 = 2.

Problem 2.

1. Suppose f(x) = x + 1. Are there any functions g such that f ◦ g = g ◦ f?

2. Suppose that f is a constant function. For which functions g does f ◦ g = g ◦ f?

3. Suppose that f ◦ g = g ◦ f for all functions f . Show that g is the identity function
g(x) = x.

Solution.

1. Yes. For example, the identity function g(x) = x has this property.

2. Suppose f(x) = c for all x. Then f ◦g = g ◦f if and only if ∀x (f ◦g)(x) = (g ◦f)(x) iff
∀x f(g(x)) = g(f(x)) iff ∀x c = g(c) iff c = g(c). So g satisfies f ◦ g = g ◦ f iff g(c) = c.

3. If f ◦ g = g ◦ f for all functions f then in particular f ◦ g = g ◦ f for all constant
functions f(x) = c. But then by the previous part for all constant c we have g(c) = c
and this precisely means that g is the identity function g(x) = x.

Problem 3. Sketch, to the best of your understanding, the graph of the function

f(x) = x2 − 1

x2
.

(What happens for x near 0? For large x? Where does the graph lie relative to the graph of
the function y = x2?)
Solution. The first graph below shows x2 (above the x axis) and −1/x2 (below the x axis.
The second shows the sum of the two, the desired function x2 − 1/x2:
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For x near 0 our function goes to −∞, for large x it goes to +∞. It is always below x2

but for large x it is very near x2.
Problem 4. Write the definition of lim

x→a
f(x) = l and give examples to show that the

following definitions of lim
x→a

f(x) = l do not agree with the standard one:

1. For all δ > 0 there is an ε > 0 such that if 0 < |x− a| < δ, then |f(x)− l| < ε.

2. For all ε > 0 there is a δ > 0 such that if |f(x)− l| < ε, then 0 < |x− a| < δ.

Solution. The definition is: For every ε > 0 there is a δ > 0 so that whenever 0 < |x−a| < δ
we have that |f(x)− l| < ε. The required examples:

1. This is satisfied whenever |f | is bounded and regardless of its limit. Indeed, choose ε
bigger than |l|+ M where M is a bound on |f |, and |f(x)− l| < ε is always true.

2. According to this definition, for example, lim
x→a

c = c is false, and hence it cannot

be equivalent to the standard definition. Indeed, in this case |f(x) − l| < ε means
0 = |c− c| < ε. This imposes no condition on x, so |x− a| need not be smaller than δ.

Problem 5. Suppose that g is continuous at 0 and g(0) = 0 and that |f(x)| ≤
√
|g(x)| for

all x. Show that f is continuous at 0.
Solution. At x = 0 the inequality |f(x)| ≤

√
|g(x)| reads |f(0)| ≤

√
|g(0)| =

√
|0| = 0,

and hence f(0) = 0. We claim that lim
x→0

f(x) = 0 and hence that f is continuous at 0.

Indeed let ε > 0 be given. Then ε2 > 0 and by the continuity of g at 0 we can find
a δ > 0 so that whenever |x| < δ we have that |g(x)| < ε2. But then if |x| < δ then
|f(x)| ≤

√
|g(x)| =

√
ε2 = ε and the definition of lim

x→0
f(x) = 0 is satisfied.
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