Dror Bar-Natan: Classes: 2002-03: Math 157 - Analysis I:

Visualization

web version:
http://www.math.toronto.edu/~drorbn/classes/0203/157AnalysisI/Visualization/Visualization.html
Our task for this week is to master the axiomatically meaningless task of visualization of numbers and functions. We will learn how to interpret graphically all of the following:

1. A number a, the order relation $a<b$ and the absolute value of a difference $|a-b|$.
2. Intervals such as $(a, b):=\{x: a<x<b\},[a, b):=\{x: a \leq x<b\},[a, b]:=\{x: a \leq$ $x \leq b\},(a, \infty):=\{x: x>a\}$ and $(-\infty, a]:=\{x: x \leq a\}$.
3. A point (a, b) in the plane. (Notice the sad clash of notation).
4. The graphs of the functions $f_{1}(x)=c, f_{2}(x)=c x$ and $f_{3}(x)=c x+d$.
5. The Euclidean distance function $d((a, b),(c, d)):=\sqrt{(a-c)^{2}+(b-d)^{2}}$.
6. The parabola $y=x^{2}$ and the graphs of $f(x)=x^{n}$ for several n 's.
7. The graphs of $f_{1}(x)=\frac{1}{x}, f_{2}(x)=\frac{1}{x^{2}}, f_{3}(x)=\frac{1}{1+x^{2}}$ and $f_{4}(x)=\frac{x}{1+x^{2}}$.
8. The graphs of $f_{1}(x)=\sin x, f_{2}(x)=\sin \frac{1}{x}, f_{3}(x)=x \sin \frac{1}{x}$ and $f_{4}(x)=x^{2} \sin \frac{1}{x}$.
9. The graphs of $f_{1}(x)=\left\{\begin{array}{ll}x^{2} & x<1 \\ 2 & x \geq 1\end{array}, f_{2}(x)=\left\{\begin{array}{ll}x^{2} & x \leq 1 \\ 2 & x>1\end{array}\right.\right.$ and $f_{3}(x)=\left\{\begin{array}{ll}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{array}\right.$.
10. The circle $(x-a)^{2}+(y-b)^{2}=r^{2}$, the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
