Dror Bar-Natan: Classes: 2002-03: Math 157 - Analysis I:

Welcome Back!

armed with the known, we sail to explore the yet unknown

web version:

http://www.math.toronto.edu/~drorbn/classes/0203/157AnalysisI/WelcomeBack/WelcomeBack.html

The Known:

Setting. f bounded on [a, b], $P : a = t_0 < t_1 < \cdots < t_n = b$ a partition of [a, b], $m_i = \inf_{[t_{i-1}, t_i]} f(x)$, $M_i = \sup_{[t_{i-1}, t_i]} f(x)$, $L(f, P) = \sum_{i=1}^n m_i(t_i - t_{i-1})$, $U(f, P) = \sum_{i=1}^n M_i(t_i - t_{i-1})$, $L(f) = \sup_P L(f, P)$, $U(f) = \inf_P U(f, P)$. Finally, if U(f) = L(f) we say that "f is integrable on [a, b]" and set $\int_a^b f = \int_a^b f(x) dx = U(f) = L(f)$.

Theorem 13-1. For any two partitions $P_{1,2}$, $L(f, P_1) \leq U(f, P_2)$.

Theorem 13-2. f is integrable iff for every $\epsilon > 0$ there is a partition P such that $U(f, P) - L(f, P) < \epsilon$.

Theorem 13-3. If f is continuous on [a, b] then f is integrable on [a, b].

Theorem 14-2. (The Second Fundamental Theorem of Calculus) If f' is integrable on [a, b], where f is some differentiable function, then $\int_a^b f' = f(b) - f(a)$.

Theorem 13-4. If a < c < b then $\int_a^b f = \int_a^c f + \int_c^b f$ (in particular, the rhs makes sense iff the lhs does).

The Yet Unknown:

Convention. $\int_a^a f := 0$ and if b < a we set $\int_a^b f := -\int_b^a f$.

Theorem 13-4'. $\int_a^b f = \int_a^c f + \int_c^b f$ so long as all integrals exist, no matter how *a*, *b* and *c* are ordered.

Theorem 13-5. If f and g are integrable on [a, b] then so is f+g, and $\int_a^b f+g = \int_a^b f+\int_a^b g$. **Theorem 13-6.** If f is integrable on [a, b] and c is a constant, then cf is integrable on [a, b] and $\int_a^b cf = c \int_a^b f$.

Theorem 13-7^a. If $f \leq g$ on [a, b] and both are integrable on [a, b], then $\int_a^b f \leq \int_a^b g$.

Theorem 13-7. If $m \leq f(x) \leq M$ on [a, b] and f is integrable on [a, b] then $m(b - a) \leq \int_a^b f \leq M(b - a)$.

Theorem 13-8. If f is integrable on [a, b] and F is defined on [a, b] by $F(x) = \int_a^x f$, then F is continuous on [a, b].

Theorem 14-1. (The First Fundamental Theorem of Calculus) Let f be integrable on [a, b], and define F on [a, b] by $F(x) = \int_a^x f$. If f is continuous at $c \in [a, b]$, then F is differentiable at c and F'(c) = f(c).