Dror Bar-Natan: Classes: 2003-04: Math 1350F - Knot Theory:

Homework Assignment 5

Assigned Thursday October 16; due Thursday October 23 in class.

Required reading. Sections 1 and 2 of my paper On the Vassiliev Knot Invariants.

To be handed in.

- 1. Let Δ be the "doubling" (also called "cabling") operation on knots, which takes a framed knot and replaces it by a 2-component link by "replacing every line by a double line" in an obvious manner.
 - (a) Show that if V is a type m invariant of 2-component links then $V \circ \Delta$ is a type m invariant of knots.
 - (b) Find a map $\Delta : \mathcal{A}(\bigcirc) \to \mathcal{A}(\bigcirc\bigcirc)$ (sorry for the "operator overloading") for which $W_{V \circ \Delta} = W_V \circ \Delta$ for all such m and V. (Verify that you proposed map respects the 4T relation!)
- 2. If D is a chord diagram, let X(D) be the number of "chord crossings" in D (so for example, $X(\otimes) = 1$).
 - (a) Does $X : \mathcal{D} \to \mathbb{Z}$ satisfy the 4T relation?
 - (b) Let *m* by a natural number. Can you find a type *m* knot invariant *V* for which $W_V = X$?

Idea for a good deed. Tell us about the Milnor-Moore theorem: A connected commutative and co-commutative graded Hopf algebra over a field of characteristic 0 which is of finite type, is the symmetric algebra over the vector space of its primitives.