Dror Bar-Natan: Classes: 2003-04: Math 1350F - Knot Theory:

Homework Assignment 5

Assigned Thursday October 16; due Thursday October 23 in class.

Required reading. Sections 1 and 2 of my paper On the Vassiliev Knot Invariants. To be handed in.

1. Let Δ be the "doubling" (also called "cabling") operation on knots, which takes a framed knot and replaces it by a 2 -component link by "replacing every line by a double line" in an obvious manner.
(a) Show that if V is a type m invariant of 2-component links then $V \circ \Delta$ is a type m invariant of knots.
(b) Find a map $\Delta: \mathcal{A}(\bigcirc) \rightarrow \mathcal{A}(\bigcirc \bigcirc)$ (sorry for the "operator overloading") for which $W_{V \circ \Delta}=W_{V} \circ \Delta$ for all such m and V. (Verify that you proposed map respects the $4 T$ relation!)
2. If D is a chord diagram, let $X(D)$ be the number of "chord crossings" in D (so for example, $X(\otimes)=1)$.
(a) Does $X: \mathcal{D} \rightarrow \mathbb{Z}$ satisfy the $4 T$ relation?
(b) Let m by a natural number. Can you find a type m knot invariant V for which $W_{V}=X$?

Idea for a good deed. Tell us about the Milnor-Moore theorem: A connected commutative and co-commutative graded Hopf algebra over a field of characteristic 0 which is of finite type, is the symmetric algebra over the vector space of its primitives.

