Dror Bar-Natan: Classes: 2003-04: Math 1350F - Knot Theory:

Homework Assignment 6: Deframing

Assigned Thursday October 23; due Thursday October 30 in class.

Required reading. Sections 2 and 3 of my paper On the Vassiliev Knot Invariants.

Let $\Theta : \mathcal{A} \to \mathcal{A}$ be the multiplication operator by the chord diagram θ , and let $\partial_{\theta} = \frac{d}{d\theta}$ be the adjoint of multiplication by W_{θ} on \mathcal{A}^* , where W_{θ} is the obvious dual of θ in \mathcal{A}^* . Let $P : \mathcal{A} \to \mathcal{A}$ be defined by

$$P = \sum_{n=0}^{\infty} \frac{(-\Theta)^n}{n!} \partial_{\theta}^n.$$

The following assertions can be verified:

- 1. $[\partial_{\theta}, \Theta] = 1$, where $1 : \mathcal{A} \to \mathcal{A}$ is the identity map and where [A, B] := AB BA for any two operators.
- 2. P is a degree 0 operator; that is, deg $Pa = \deg a$ for all $a \in \mathcal{A}$.
- 3. ∂_{θ} satisfies Leibnitz' law: $\partial_{\theta}(ab) = (\partial_{\theta}a)b + a(\partial_{\theta}b)$ for any $a, b \in \mathcal{A}$.
- 4. P is an algebra morphism: P1 = 1 and P(ab) = (Pa)(Pb).
- 5. Θ satisfies the co-Leibnitz law: $\Box \circ \Theta = (\Theta \otimes 1 + 1 \otimes \Theta) \circ \Box$ (why does this deserve the name "the co-Leibnitz law"?).
- 6. *P* is a co-algebra morphism: $\eta \circ P = \eta$ (where η is the co-unit of \mathcal{A}) and $\Box \circ P = (P \otimes P) \circ \Box$.
- 7. $P\theta = 0$ and hence $P\langle\theta\rangle = 0$, where $\langle\theta\rangle$ is the ideal generated by θ in the algebra \mathcal{A} .
- 8. If $Q: \mathcal{A} \to \mathcal{A}$ is defined by

$$Q = \sum_{n=0}^{\infty} \frac{(-\Theta)^n}{(n+1)!} \partial_{\theta}^{(n+1)}$$

then $a = \theta Q a + P a$ for all $a \in \mathcal{A}$.

- 9. ker $P = \langle \theta \rangle$.
- 10. *P* descends to a Hopf algebra morphism $\mathcal{A}^r \to \mathcal{A}$, and if $\pi : \mathcal{A} \to \mathcal{A}^r$ is the obvious projection, then $\pi \circ P$ is the identity of \mathcal{A}^r . (Recall that $\mathcal{A}^r = \mathcal{A}/\langle \theta \rangle$.)

11.
$$P^2 = P$$
.

To be handed in. Verify assertions 4, 5, 7 and 11 above.

Recommended for extra practice. Verify all the other assertions above.

Idea for a good deed. Prepare a beautiful T_EX writeup (including the motivation and all the details) of the solution of this assignment for publication on the web. For all I know this information in this form is not available elsewhere.