Dror Bar-Natan: Classes: 2003-04: Math 1350F - Knot Theory:

Homework Assignment 6: Deframing

Assigned Thursday October 23; due Thursday October 30 in class.
Required reading. Sections 2 and 3 of my paper On the Vassiliev Knot Invariants.
Let $\Theta: \mathcal{A} \rightarrow \mathcal{A}$ be the multiplication operator by the chord diagram θ, and let $\partial_{\theta}=\frac{d}{d \theta}$ be the adjoint of multiplication by W_{θ} on \mathcal{A}^{\star}, where W_{θ} is the obvious dual of θ in \mathcal{A}^{\star}. Let $P: \mathcal{A} \rightarrow \mathcal{A}$ be defined by

$$
P=\sum_{n=0}^{\infty} \frac{(-\Theta)^{n}}{n!} \partial_{\theta}^{n}
$$

The following assertions can be verified:

1. $\left[\partial_{\theta}, \Theta\right]=1$, where $1: \mathcal{A} \rightarrow \mathcal{A}$ is the identity map and where $[A, B]:=A B-B A$ for any two operators.
2. P is a degree 0 operator; that is, $\operatorname{deg} P a=\operatorname{deg} a$ for all $a \in \mathcal{A}$.
3. ∂_{θ} satisfies Leibnitz' law: $\partial_{\theta}(a b)=\left(\partial_{\theta} a\right) b+a\left(\partial_{\theta} b\right)$ for any $a, b \in \mathcal{A}$.
4. P is an algebra morphism: $P 1=1$ and $P(a b)=(P a)(P b)$.
5. Θ satisfies the co-Leibnitz law: $\square \circ \Theta=(\Theta \otimes 1+1 \otimes \Theta) \circ \square$ (why does this deserve the name "the co-Leibnitz law"?).
6. P is a co-algebra morphism: $\eta \circ P=\eta$ (where η is the co-unit of \mathcal{A}) and $\square \circ P=$ $(P \otimes P) \circ \square$.
7. $P \theta=0$ and hence $P\langle\theta\rangle=0$, where $\langle\theta\rangle$ is the ideal generated by θ in the algebra \mathcal{A}.
8. If $Q: \mathcal{A} \rightarrow \mathcal{A}$ is defined by

$$
Q=\sum_{n=0}^{\infty} \frac{(-\Theta)^{n}}{(n+1)!} \partial_{\theta}^{(n+1)}
$$

then $a=\theta Q a+P a$ for all $a \in \mathcal{A}$.
9. ker $P=\langle\theta\rangle$.
10. P descends to a Hopf algebra morphism $\mathcal{A}^{r} \rightarrow \mathcal{A}$, and if $\pi: \mathcal{A} \rightarrow \mathcal{A}^{r}$ is the obvious projection, then $\pi \circ P$ is the identity of \mathcal{A}^{r}. (Recall that $\mathcal{A}^{r}=\mathcal{A} /\langle\theta\rangle$.)
11. $P^{2}=P$.

To be handed in. Verify assertions 4, 5, 7 and 11 above.
Recommended for extra practice. Verify all the other assertions above.
Idea for a good deed. Prepare a beautiful $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ writeup (including the motivation and all the details) of the solution of this assignment for publication on the web. For all I know this information in this form is not available elsewhere.

