Dror Bar-Natan: Classes: 2004-05: Math 157 - Analysis I:

Math 157 Analysis I — Solution of Term Exam 1

web version: http://www.math.toronto.edu/~drorbn/classes/0405/157AnalysisI/TE1/Solution.html

Problem 1. Find formulas for $\sin \alpha$, $\cos \alpha$ and $\tan \alpha$ in terms of $\tan \frac{\alpha}{2}$. (You may use any formula proven in class; you need to quote such formulae, though you don't need to reprove them).

Solution. (Graded by Shay Fuchs) Using the formulas $\sin 2\beta = 2 \sin \beta \cos \beta$ and $\sin^2 \beta + \cos^2 \beta = 1$ and taking $\beta = \frac{\alpha}{2}$ we get

$$\sin \alpha = \frac{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{\sin^2\frac{\alpha}{2} + \cos^2\frac{\alpha}{2}}.$$

Dividing the numerator and denominator by $\cos^2 \frac{\alpha}{2}$ this becomes

$$\sin \alpha = \frac{2\tan\frac{\alpha}{2}}{\tan^2\frac{\alpha}{2} + 1}$$

Likewise using $\cos 2\beta = \cos^2 \beta - \sin^2 \beta$ we get

$$\cos \alpha = \frac{\cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}}{\cos^2 \frac{\alpha}{2} + \sin^2 \frac{\alpha}{2}} = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}.$$

Finally, dividing these two formulas by each other we get

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{2 \tan \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}}.$$

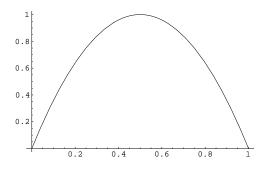
Problem 2.

- 1. Let k be a natural number. Prove that any natural number n can be written in a unique way in the form n = qk + r, where q and r are integers and $0 \le r < k$.
- 2. We say that a natural number n is "divisible by 3" if n/3 is again a natural number. Prove that n is divisible by 3 if and only if n^2 is divisible by 3.
- 3. We say that a natural number n is "divisible by 4" if n/4 is again a natural number. Is it true that n is divisible by 4 if and only if n^2 is divisible by 4?

Solution. (Graded by Brian Pigott)

1. We prove this assertion (without uniqueness) by induction. If n = 1 write n = 0k + 1(if k > 1) or n = 1k + 0 (if k = 1). In either case the assertion is proven for n = 1. Now assume n can be written in the form n = qk + r, where q and r are integers and $0 \le r < k$. If r < k - 1 then r + 1 < k and so n + 1 = (qk + r) + 1 = qk + (r + 1) is a formula of the desired form for n+1. Otherwise r = k - 1 and so n + 1 = (qk + r) + 1 =q(k + 1) = q(k + 1) + 0, and again that's a formula of the desired form for n + 1. This concludes the proof that every natural number n can be written in the form n = qk+r, where q and r are integers and $0 \le r < k$. Now assume it can be done in two ways; i.e., assume $n = q_1k + r_1 = q_2k + r_2$ where q_1, q_2, r_1 and r_2 are integers and $0 \le r_1, r_2 < k$. But then $q_1k + r_1 = q_2k + r_2$ and so $(q_1 - q_2)k = r_2 - r_1$ and so $q_1 - q_2 = \frac{r_2 - r_1}{k}$. But $q_1 - q_2$ is an integer and so $\gamma = \frac{r_2 - r_1}{k}$ is an integer. From $0 \le r_1, r_2 < k$ it follows that $-k < r_2 - r_1 < k$ and so $-1 < \gamma < 1$ and so the integer γ must be 0. Thus $0 = \frac{r_2 - r_1}{k}$ and so $r_1 = r_2$. But then the equality $n = q_1k + r_1 = q_2k + r_2$ implies $q_1k = q_2k$ and so $q_1 = q_2$ and we see that the pair (q, r) is unique.

- 2. An integer n is divisible by 3 iff q = n/3 is an integer iff n = 3q with an integer q. Now if n is divisible by 3 then n = 3q with an integer q and then $n^2 = (3q)^2 = 9q^2 = 3(3q^2)$. So n^2 is also 3 times an integer (the integer $3q^2$), and so n^2 is also divisible by 3. Assume now that n is not divisible by 3. By the previous part n = 3q + r with integer q and r and with $0 \le r < 3$. Had r been 0 we'd have had that n = 3q + 0 = 3qis divisible by 3 contrary to assumption. So r = 1 or r = 2. In the former case $n^2 = (3q+1)^2 = 3(3q^2+2q)+1$, but then by the uniqueness of writing n^2 as 3q' + r' it follows that r' = 1, so n^2 cannot be written in the form $n^2 = 3q'$, so n^2 is not divisible by 3. In the latter case $n^2 = (3q+2)^2 = 3(3q^2+4q+1)+1$ and for the same reason again we find that n^2 is not divisible by 3. So if n is divisible by 3 so is n^2 , and if n is not divisible by 3 so is n^2 .
- 3. No it's not true. Example: 2 is not divisible by 4 but $2^2 = 4$ is divisible by 4.



Problem 3. A function f(x) is defined for $0 \le x \le 1$ and has the graph plotted above.

- 1. What are f(0), f(0.5) and f(1)?
- 2. Let g be the function $f \circ f$. What are g(0), g(0.5) and g(1)?
- 3. Are there any values of x for which g(x) = 1? How many such x's are there? Roughly what are they?
- 4. Plot the graph of the function g. (The general shape of your plot should be clear and correct, though numerical details need not be precise).
- 5. (5 points bonus, will be given only to excellent solutions and may raise your overall exam grade to 105!) Plot the graphs of the functions $g \circ f$ and $g \circ g$.

Solution. (Graded by Derek Krepski)

- 1. By inspecting the graph, f(0) = 0, f(0.5) = 1 and f(1) = 0.
- 2. g(0) = f(f(0)) = f(0) = 0, g(0.5) = f(f(0.5)) = f(1) = 0 and g(1) = f(f(1)) = f(0) = 0.
- 3. g(x) = 1 means f(f(x)) = 1. Denoting y = f(x) we must have f(y) = 1, and inspecting the graph we find that y = 0.5. Thus f(x) = 0.5. Inspecting the graph we find that there are two values of x for which this happens and they are approximately x = 0.15 and x = 0.85.
- 4. and 5.:

$$\begin{array}{c} \begin{array}{c} 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.8 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.8 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.8 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.4 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.8 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.8 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.$$

Problem 4.

- 1. Define " $\lim_{x \to a} f(x) = l$ " and " $\lim_{x \to a+} f(x) = l$ ".
- 2. Prove that if $\lim_{x \to a^+} f(x) = l$ and $\lim_{x \to a^-} f(x) = l$ then $\lim_{x \to a} f(x) = l$.
- 3. Prove that if $\lim_{x \to a} f(x) = l$ then $\lim_{x \to a^+} f(x) = l$ and $\lim_{x \to a^-} f(x) = l$.
- 4. Draw the graph of some function for which $\lim_{x \to a^+} f(x) = 0$ and $\lim_{x \to a^-} f(x) = 1$.

Solution. (Graded by Shay Fuchs)

- 1. " $\lim_{x \to a} f(x) = l$ " means that for every $\epsilon > 0$ there is a $\delta > 0$ so that whenever $0 < |x a| < \delta$ we have that $|f(x) l| < \epsilon$, while " $\lim_{x \to a+} f(x) = l$ " means that for every $\epsilon > 0$ there is a $\delta > 0$ so that whenever $0 < x a < \delta$ (i.e., whenever $a < x < a + \delta$) we have that $|f(x) l| < \epsilon$
- 2. Let $\epsilon > 0$ be given. Using $\lim_{x \to a+} f(x) = l$ choose $\delta_1 > 0$ so that whenever $0 < x a < \delta_1$ we have that $|f(x) - l| < \epsilon$. Using $\lim_{x \to a-} f(x) = l$ choose $\delta_2 > 0$ so that whenever $0 < a - x < \delta_1$ we have that $|f(x) - l| < \epsilon$. Set $\delta = \min(\delta_1, \delta_2)$ and assume $0 < |x - a| < \delta$. If x > a then $0 < x - a < \delta \le \delta_1$ and by the choice of δ_1 it follows that $|f(x) - l| < \epsilon$. If x < a then $0 < a - x < \delta \le \delta_2$ and by the choice of δ_2 it follows that $|f(x) - l| < \epsilon$. So in any case, $|f(x) - l| < \epsilon$ as required.

3. Let $\epsilon > 0$ be given. Using $\lim_{x \to a} f(x) = l$ choose $\delta > 0$ so that whenever $0 < |x - a| < \delta$ we have that $|f(x) - l| < \epsilon$. But then if $0 < x - a < \delta$ then certainly $0 < |x - a| < \delta$ so by the choice of δ we get $|f(x) - l| < \epsilon$. Thus $\lim_{x \to a^+} f(x) = l$. A similar argument shows that also $\lim_{x \to a^-} f(x) = l$.

Problem 5. Give examples to show that the following definitions of $\lim_{x \to a} f(x) = l$ do not agree with the standard one:

- 1. For all $\delta > 0$ there is an $\epsilon > 0$ such that if $0 < |x a| < \delta$, then $|f(x) l| < \epsilon$.
- 2. For all $\epsilon > 0$ there is a $\delta > 0$ such that if $|f(x) l| < \epsilon$, then $0 < |x a| < \delta$.

Solution. (Graded by Derek Krepski)

- 1. This is satisfied whenever there exists a constant M so that |f(x)| < M for all x and regardless of the limit of f. Indeed, choose ϵ bigger than |l| + M where M is a constant as in the previous sentence (for example, if f is $\sin x$, then M can be chosen to be 1), and then $|f(x) l| < \epsilon$ is always true.
- 2. According to this definition, for example, $\lim_{x \to a} c = c$ is false, and hence it cannot be equivalent to the standard definition. Indeed, in this case $|f(x) - l| < \epsilon$ means $0 = |c - c| < \epsilon$. This imposes no condition on x, so |x - a| need not be smaller than δ .

The results. 89 students took the exam; the average grade was 59 and the standard deviation was about 18.5.