A Cup Product Example

web version: http://www.math.toronto.edu/~drorbn/classes/0405/Topology/CupExample/CupExample.html

From this picture (drawn with help from Jacob Tsimerman) we can read the following:

$$
\begin{aligned}
& \alpha_{1}^{\dagger}=a_{1}^{\star}+r_{1}^{\star}+r_{2}^{\star}, \quad-\beta_{1}^{\dagger}=b_{1}^{\star}+r_{3}^{\star}+r_{2}^{\star} . \\
& \partial_{2} A_{1+}=r_{0}, \quad \partial_{0} A_{1+}=a_{1}, \quad \alpha_{1}^{\dagger} \cup \beta_{1}^{\dagger}\left(A_{1+}\right)=\alpha_{1}\left(\partial_{2} A_{1+}\right) \beta_{1}\left(\partial_{0} A_{1+}\right)=0 \cdot 0=0 . \\
& \partial_{2} B_{1+}=r_{1}, \quad \partial_{0} B_{1+}=b_{1}, \quad \alpha_{1}^{\dagger} \cup \beta_{1}^{\dagger}\left(B_{1+}\right)=\alpha_{1}\left(\partial_{2} B_{1+}\right) \beta_{1}\left(\partial_{0} B_{1+}\right)=1 \cdot(-1)=-1 . \\
& \partial_{2} A_{1-}=r_{3}, \quad \partial_{0} A_{1-}=a_{1}, \quad \alpha_{1}^{\dagger} \cup \beta_{1}^{\dagger}\left(A_{1-}\right)=\alpha_{1}\left(\partial_{2} A_{1-}\right) \beta_{1}\left(\partial_{0} A_{1-}\right)=0 \cdot 0=0 . \\
& \partial_{2} B_{1-}=r_{4}, \quad \partial_{0} B_{1-}=b_{1}, \quad \alpha_{1}^{\dagger} \cup \beta_{1}^{\dagger}\left(B_{1-}\right)=\alpha_{1}\left(\partial_{2} B_{1-}\right) \beta_{1}\left(\partial_{0} B_{1-}\right)=0 \cdot(-1)=0 .
\end{aligned}
$$

So $\alpha_{1}^{\dagger} \cup \beta_{1}^{\dagger}=-B_{1+}^{\star}$ is a generator of H^{2}.
Exercise. Verify that $\beta_{1}^{\dagger} \cup \alpha_{1}^{\dagger}=-A_{1-}^{\star}$ is also a generator of H^{2}, but note that in H^{2} we have $B_{1+}^{\star}=-A_{1-}^{\star}$ so the cup product is not commutative!

The Hopf Fibration as drawn by Penrose and Rindler:

