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Abstract. Continuing the work started in [Å-I] and [Å-II], we
prove the relationship between the Århus integral and the invari-
ant Ω (henceforth called LMO) defined by T.Q.T. Le, J. Murakami
and T. Ohtsuki in [LMO]. The basic reason for the relationship
is that both constructions afford an interpretation as “integrated
holonomies”. In the case of the Århus integral, this interpretation
was the basis for everything we did in [Å-I] and [Å-II]. The main
tool we used there was “formal Gaussian integration”. For the case
of the LMO invariant, we develop an interpretation of a key ingre-
dient, the map jm, as “formal negative dimensional integration”.
The relation between the two constructions is then an immediate
corollary of the relationship between the two integration theories.
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1. Introduction

This paper is the third in a four-part series on “the Århus integral
of rational homology 3-spheres”. In Part I of this series [Å-I], we gave
the definition of a diagram-valued invariant Å of rational homology
spheres.1 In Part II ([Å-II]) we proved that Å is a well-defined invariant
of rational homology 3-spheres and that it is universal in the class of
finite type invariants of integral homology spheres. In this paper we
show that Å, when defined, is essentially equal to the invariant LMO
defined earlier by Le, Murakami and Ohtsuki in [LMO].

Both invariants LMO and Å take values in the space A(∅), the
completed graded space of manifold diagrams modulo the AS and
IHX relations, as defined in detail in [Å-I, Definition 2.3] and recalled
briefly in Figure 1; the precise statement of their near-equality is as
follows:

Theorem 1. (Proof in Section 5) Let M be a rational homology sphere
and let |H1(M)| denote the number of elements in its first cohomology
group (over Z). Then

(1) Å(M) = |H1(M)|−degLMO(M),

1A precise definition of Å appears in [Å-I]. It is a good idea to have [Å-I] as well
as [LMO] handy while reading this paper, as many of the definitions introduced
and explained in those articles will only be repeated here in a very brief manner.
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Figure 1. A connected manifold diagram of degree 6 (half

the number of vertices in it) and the IHX and AS rela-

tions.

{
regular
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tangles

}
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version of the

Kontsevich integral

B(X)
isomorphic
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A◦(∅)/(Om, Pm+1)

A(∅)
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(m)
0

A(↑X)

R FG

σ

jm

Ž
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Figure 2. The main ingredients in the definitions of LMO0

and of Å0: The top half of this diagram is the definition of

Å0. The bottom half shows the two definitions of LMO0

— the original involving jm and our variant using
∫ (m)

;

the two are equivalent by Lemma 1.1. Finally, the triangle

on the right is nearly commutative, as detailed in Proposi-

tion 1.3.

where in the graded space A(∅), |H1(M)|− deg denotes the operation
that multiplies any degree m element by |H1(M)|−m.

In particular, if M is an integral homology sphere (that is, if
|H1(M)| = 1) then simply Å(M) = LMO(M). Also note that Equa-

tion (1) implies that Å(M) = Ω̂(M), where Ω̂ is the invariant defined
in [LMO, Section 6.2].

The definitions of LMO and Å are very similar. Let us trace this
similarity to where the two definitions diverge, which is of course the
key point of our paper, for it is at that point that we have to prove
something non-trivial. In reading the following paragraphs on the simi-
larity and differences between the definitions of LMO and Å, the reader
may find it helpful to refer to Figure 2 which summarizes the maps
and the spaces involved.
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The definitions of LMO and Å start with the definitions of their
“pre-normalized” versions LMO0 and Å0, which are invariants of reg-
ular links (framed links having a non-degenerate linking matrix) that
are also invariant under the second Kirby move and both use the
same renormalization procedure to ensure invariance also under the
first Kirby move. The resulting LMO and Å are therefore invariants
of rational homology spheres presented by surgery over regular links.

The definitions of LMO0 and Å0 are also similar. For both it is
beneficial to start with regular pure tangles (framed pure tangles hav-
ing a non-degenerate linking matrix, see [Å-I, Definition 2.2]) rather
than with regular links. By closure, every regular pure tangle defines a
regular link and every regular link is obtained in this way. Both LMO0

and Å0 descend from invariants of regular pure tangles to invariants
of links; LMO0 is defined that way in [LMO] to start with, and for Å0

it is shown in [Å-II, Section 3.1].
Both LMO0 and Å0 are defined as compositions of several maps.

In both cases the first map is Ž, the Kontsevich integral in its Le
Murakami Murakami Ohtsuki [LMMO] normalization. If X is the set
of components of a given regular pure tangle (or more elegantly, a set
of “labels” or “colors” for these components), the first map Ž takes
its values in A(↑X), the completed graded space of chord diagrams
for X-labeled pure tangles (modulo the usual 4T/STU relations; see
a precise definition in [Å-I, Definition 2.4] and a brief reminder in
Figure 3). Let us recall the definition of Ž:

Definition 2.6 of [Å-I]. (condensed) The map Ž is
the usual framed version of the Kontsevich integral Z,
normalized in a funny way. Namely, let ν = Z(©) ∈ A
be the Kontsevich integral of the unknot, and let ∆X :
A → A(↑X) be the “X-cabling” map that replaces the
single directed line in A by n directed lines labeled by
the elements of X, and sums over all possible ways of
lifting each vertex on the directed line to its n clones.
Set

Ž(T ) = ν⊗n ·∆X(ν) · Z(L)
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Figure 3. A diagram in A(↑{x,y,z}) and the STU relation.

for any X-marked framed pure tangle L, using the ac-
tion of A⊗n on A(↑X) defined by sticking any n dia-
grams in A on the n components of the skeleton of a
diagram in A(↑X).

After that the definitions of LMO and Å diverge, although a part
of this divergence is rather minor.

• Å0 is defined to be the composition Å0 =
∫ FG ◦σ ◦ Ž. Here σ de-

notes the diagrammatic version of the Poincaré Birkhoff Witt theo-
rem with values in B(X), the completed graded space of X-marked
uni-trivalent diagrams modulo AS and IHX relations (“Chinese
characters” in [B-N1, B-N2]; see a precise definition in [Å-I, Defi-
nition 2.5] and a brief reminder in Figure 4). The map σ was first
defined in [B-N1, B-N2] (see also [Å-I, Definition 2.7]); it is more
easily described through its inverse χ. If C ∈ B(X) is an X-marked
uni-trivalent diagram with kx legs marked x for any x ∈ X, then
χ(C) ∈ A(↑X) is the average of the

∏
x kx! ways of attaching the

legs of C to n labeled vertical arrows (labeled by the elements of
X), attaching legs marked by x only to the x-labeled arrow, for all
x ∈ X.

In [Å-I, Å-II] we discussed extensively how the space B(X) can be
viewed as a space of functions, and how the partially defined map∫ FG

can be viewed as “formal Gaussian integration”, (see [Å-I,
Definition 2.9] and Section 4 of this article for a definition, and
Appendix A.1 for an example of how to apply it). In a sense detailed

in [Å-I],
∫ FG

is a diagrammatic analogue of the usual notion of
perturbed Gaussian integration — it is defined by breaking the
“integrand” into “quadratic” and “higher order” terms, inverting
the quadratic, and gluing the higher order terms to each other using
the inverse quadratic as glue, in the spirit of Feynman diagrams.
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y

x

y y

w z

Figure 4. An {x, y, z, w}-marked uni-trivalent diagram.

• LMO0 is defined to be an “assembly” of maps LMO
(m)
0 , where

m ≥ 0 is an integer. That is, the degree m piece of LMO0 is defined

to be the degree m piece of LMO
(m)
0 for each m. Each map LMO

(m)
0

is a composition jm◦Ž where each jm, and hence each map LMO
(m)
0 ,

has a different target space. These target spaces are the spaces
A◦(∅)/(Om, Pm+1), where A◦(∅) is the same as the space A(∅) ex-
cept that the diagrams may contain components with no vertices
(closed circles). The relations Om and Pm+1 were introduced by
Le, Murakami and Ohtsuki in [LMO]. Om says that disjoint union
with a closed circle is equivalent to multiplication by (−2m) and
Pm+1 says that the sum of all ways of pairing up 2m + 2 stubs
attaching to the rest of the diagram is 0 (see Figure 5). By [LMO,
Lemma 3.3], when we restrict to the space A◦≤m(∅) of diagrams
of degree ≤ m, the quotient by these relations is isomorphic to
the corresponding restriction A≤m(∅) of A(∅). Hence the assembly
LMO0 can be regarded as taking values in A(∅).

= (−2m)·

: = 0+ + .

Figure 5. The relation Om and the relation P2. In the

figure for P2, the dashed square marks the parts of the

diagrams where the relation is applied.

A part of the divergence between the two definitions can be eas-

ily remedied. In Section 2.1 we will define a map
∫ (m)

: B(X) →
A◦(∅)/(Om, Pm+1) (called “negative-dimensional formal integration”
for reasons to be explained in Section 3) and prove the following
lemma:
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Lemma 1.1. (Proof in Section 2.1, and see also [Le, Lemma 6.3]) The

composition
∫ (m) ◦ σ is equal to jm/(Om, Pm+1).

Using this lemma we can redefine LMO
(m)
0 to be the composition∫ (m) ◦ σ ◦ Ž. Comparing with Å0 =

∫ FG ◦σ ◦ Ž we see that the

major difference between LMO0 and Å0 is in the use of the different

“integrals”
∫ (m)

and
∫ FG

. Thus the main technical challenge in this
paper is to compare the two integration theories. This is fully achieved

by Proposition 1.3 below, which says that whenever
∫ FG

is defined, the
two “integrals” differ only by a normalization, and hence ultimately,
the same holds for Å and LMO.

Definition 1.2. A “function” G ∈ B(X) is said to be a perturbed
non-degenerate Gaussian (in the variables in X) if it is of the form

G = P exp
(1

2

∑
x,y∈X

lxy
x_y

)

for some invertible symmetric matrix Λ = (lxy) and some P ∈ B+(X).
Here and throughout this paper, the product on diagrams is the dis-
joint union product, x_y denotes a strut (a diagram in B(X) made
of a single edge with no internal vertices) with ends labeled x and y
and B+(X) ⊂ B(X) is the space of “strutless” diagrams in which each
component has at least one internal vertex (cf. [Å-II, Section 2.2]).

Proposition 1.3. (Proof in Section 4) If G ∈ B(X) is a perturbed
non-degenerate Gaussian, then

∫ (m)

GdX = (−1)m|X|(det Λ)m

∫ FG

GdX

in A◦≤m(∅)/(Om, Pm+1) ' A≤m(∅).
Note that

∫ (m)
is defined in more cases than

∫ FG
, but when they

are both defined, they are related in a simple way.

1.1. Organization. In Section 2, we define
∫ (m)

, prove Lemma 1.1,
and give an alternate formulation of the Pm+1 relation. In Section 3

we prove some properties of
∫ (m)

which justify the name “negative-
dimensional formal integration”. These properties are useful in Sec-
tion 4, where we prove the central Proposition 1.3 which is shown to



8 D. BAR-NATAN, S. GAROUFALIDIS, L. ROZANSKY, AND D.P. THURSTON

imply Theorem 1 in Section 5. Section 6 contains remarks on negative-
dimensional spaces, sign choices for diagrams, and the Rozansky Wit-

ten invariants. Appendix A compares the definitions of
∫ FG

and
∫ (m)

by working out the first two terms in a non-trivial integral.

2. A reformulation of the Le Murakami Ohtsuki
invariant

In this section we give a (minor) reformulation of the Le Murakami

Ohtsuki invariant LMO(m). In Section 2.1 we present our definition of∫ (m)
and prove equivalence with the definition of jm in [LMO]. In

Section 2.2 we state and prove an alternate form C2m+1 of the relation
Pm+1.

2.1. Definition and notation.

Definition 2.1. Let “negative-dimensional integration” be defined by

(2)

∫ (m)

: B(X) → A(∅)/(Om, Pm+1)

∫ (m)

GdX =
〈 ∏

x∈X

1

m!

(
∂x^∂x

2

)m

, G
〉

X

/
(Om, Pm+1).

Here the pairing 〈· , ·〉X : B(∂X) ⊗ B(X) → A◦(∅) is defined (as
in [Å-I, Definition 2.9]) by

〈D1 , D2〉X =

(
sum of all ways of gluing the ∂x-marked legs of
D1 to the x-marked legs of D2, for all x ∈ X

)
,

where, as there, ∂X = {∂x : x ∈ X} denotes a set of labels “dual”
to the ones in X, and the sum is declared to be 0 if the numbers of
appropriately marked legs do not match. If it is clear which legs are
to be attached, the subscript X may be omitted.

In other words,
∫ (m)

G is the composition of:

• projection of G to the component with exactly 2m legs of each
color in X

• sum over all
(
(2m−1)!!

)|X|
=

(
(2m)!
2mm!

)|X|
ways of pairing up the

legs of each color in X
• quotient by the Om and Pm+1 relations.
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An example of how to apply this definition is given in Appen-
dix A.2.

Our definition of
∫ (m)

is slightly different in appearance than the
definition of the corresponding object, jm, in [LMO]. For example, jm is

defined on A(↑X) while
∫ (m)

is defined on the different but isomorphic
space B(X). We now prove Lemma 1.1, which says that this is the only
difference between the two maps.

Proof of Lemma 1.1. We prove that jm ◦χ =
∫ (m)

, where χ : B(X) →
A(↑X) is the inverse of σ as in the previous section.

First recall from [LMO] how jm is defined. If D is a diagram
representing a class in A(↑X), then jm(D) is computed by removing
the n arrows from D so that n groups of stubs remain, and then by
gluing certain (linear combinations of) forests on these stubs, so that
each tree in each forest gets glued only to the stubs within some specific
group. It is not obvious that jm is well defined; it may not respect the
STU relation. With some effort, it is proved in [LMO] that for the
specific combinations of forests used there, jm is indeed well defined.

Now every tree that has internal vertices has some two leaves that
connect to the same internal vertex, and hence (modulo AS), every
such tree is anti-symmetric modulo some transposition of its leaves.
Thus gluing such a tree to symmetric combinations of diagrams, such
as those in the image of χ, we always get 0. Hence in the computation
of jm ◦χ it is enough to consider forests of trees that have no internal
vertices; that is, forests of struts. Extracting the precise coefficients
from [LMO] one easily sees that they are the same as in (2), and

hence jm ◦ χ =
∫ (m)

, as required. ¤

2.2. The Cl relations. It will be convenient for use in Proposition 3.1
to give another reformulation of the definitions of [LMO]. Instead of
their Pm+1 relation, we may use another relation, the C2m+1 relation.
For motivation, see Section 3.2.

Definition 2.2. The Cl relation2 applies when we have a diagram,
with two sets of l stubs (or teeth), and says that the sum of the
diagrams obtained by attaching the two sets of stubs to each other in

2C for Crocodile.
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all l! possible ways is 0, as in the following diagram.

Cl :

m a x i l l a

m a n d i b l e

. . . l teeth . . .

. . . l teeth . . .

sum over permutations

rest of
diagram = 0.

For example, an instance of the C3 relation says that the sum of
the following 6 diagrams is 0:

Note that both sets of relations, the Pm’s and the Cl’s, are de-
creasing in power. Namely, Pm implies Pm+1 and Cl implies Cl+1, for
every l and m (one easily sees that Pm+1 is a sum of instances of Pm,
and likewise for Cl+1 and Cl). The lemma below says that up to an
index-doubling, the two chains of relations are equivalent.

Lemma 2.3. The relations C2m+1, C2m+2, and Pm+1 are equivalent.
(All of these relations may be applied inside any space of diagrams,
regardless of the IHX, STU, or any other relations, as long as closed
circles are allowed).

Proof. It was already noted that C2m+1 implies
C2m+2. Next, it is easy to see that C2m+2 implies
Pm+1: apply the relation C2m+2 in the diagram
shown on the right, and you get (a positive mul-
tiple of) the relation Pm+1.

. . .

. . .

m+1 caps︷ ︸︸ ︷

︸ ︷︷ ︸
2m+2 legs

C2m+2
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g l u i n g s

. . .

. . . . . .

. . .

︸ ︷︷ ︸
l

l−k
2︷ ︸︸ ︷

k︷ ︸︸ ︷

The proof of the implication Pm+1 ⇒
C2m+1 is essentially the proof of Lemma 3.1
of [LMO], though the result is different.
First, a definition: for k ≤ l and l−k even,
the diagram part Ck

l has k legs pointing up
and l legs pointing down, and it is the sum
of all ways of attaching all of the k legs to
some of the l legs and then pairing up the
remaining (l−k) legs, as illustrated on the
left.

We now prove by induction that for all 0 ≤ k ≤ m, C2k+1
2m+1 = 0

modulo Pm+1. For k = 0, C1
2m+1 is a version of Pm+1. For k > 0,

apply Pm+k+1 (a consequence of Pm+1) to a diagram with 2m + 1 legs
pointing down and 2k + 1 legs pointing up, like this:

. . .

2k+1︷ ︸︸ ︷
. . .

︸ ︷︷ ︸
2m+1

Pm+k+1 =
. . .

. . . . . .

. . .
m−k︷ ︸︸ ︷

g l u i n g s

2k+1︷ ︸︸ ︷

︸ ︷︷ ︸
2m+1

+a1 . . .

. . . . . .

. . .

︸ ︷︷ ︸
2m+1

g l u i n g s

. . .

2k+1︷ ︸︸ ︷
gluings

+ · · ·

As shown in the diagram, the result splits into a sum over the
number 2l of the upwards pointing legs that get paired with each
other; for l = 0, we get C2k+1

2m+1; for l > 0, the result can be considered

to split into two diagrams, a (positive multiple of a) reversed C
2(k−l)+1
2k+1

on top of a C
2(k−l)+1
2m+1 . But by the induction hypothesis this latter term

C
2(k−l)+1
2m+1 vanishes modulo Pm+1, and we are left with only the first

term, which is therefore also a consequence of Pm+1. This completes
the inductive proof. To conclude the proof of Lemma 2.3, note that
C2m+1 = C2m+1

2m+1. ¤

3. Negative-dimensional formal integration

In this section, we give several justifications of the name “negative-

dimensional formal integration” for the map
∫ (m)

defined above. While
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doing this we prove several properties of
∫ (m)

(Propositions 3.1 and
3.2) that are used in the proof of Proposition 1.3 in Section 4.

3.1. Why integration? First, why should
∫ (m)

be called an integral?
In general, an integral is (more or less) a linear map from some space
of functions to the corresponding space of scalars. In our case, the
appropriate space of “functions” is B(X) and the appropriate space

of “scalars” is A(∅).3 The linearity of
∫ (m)

is immediate.

But
∫ (m)

is not just any integral; it is a Lebesgue integral. The
defining property of the usual Lebesgue integral on Rn is translation
invariance by a vector (x̄i). We show that the parallel property holds

for
∫ (m)

:

Proposition 3.1 (Translation Invariance). For any diagram D ∈
B(X), we have

(3)

∫ (m)

D dX =

∫ (m)

D/(x 7→ x + x̄) dX.

The notation D/(x 7→ x+ x̄) means (as in [Å-II, Section 2.1]), for
each leg of D colored x for x ∈ X, sum over coloring the leg by x or
by x̄. (So we end up with a sum of 2t terms, where t is the number of
X colored legs in D.) The set X̄ = {x̄ | x ∈ X} is an independent set
of variables for the formal translation.

Proof. By the relation Pm+1 in the definition of
∫ (m)

(or rather by
C2m+1), any diagram D ∈ B(X) with more than 2m legs on any com-
ponent gets mapped to 0 on either side of (3), so we may assume that
D has 2m legs or fewer of any color. But, for the right-hand side to
be non-zero, D/(x 7→ x + x̄) must have exactly 2m legs colored x for
each x ∈ X; this can only happen from diagrams in D with exactly
2m legs of each color and when none of them get converted to x̄. But
these are exactly the diagrams appearing in the integral on the left
hand side. ¤

3More on the interpretation of diagrams as functions and/or scalars appears
in [Å-I, Section 1.3] and [Å-II, Section 2].
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3.2. The relations Om and C2m+1. Now that you are convinced that∫ (m)
is an integral, why do we call it a “negative-dimensional” integral?

Recall that
∫ (m)

is the sum over all ways of gluing in some struts,
followed by the quotient by the Om and Pm+1 relations. This quotient

is crucial; otherwise
∫ (m)

is some random map without particularly
nice properties. But what are these relations?

The relation Om is simple. Recall [Å-II, Section 2] that we think of
diagrams as representing tensors and/or functions in/on some vector
space V . Since a strut corresponds to the identity tensor in V ? ⊗ V
(cf. [Å-II, Figure 2]), its closure, a circle, should correspond to the
trace of the identity or the dimension of V . Hence Om, which says
that a circle is equivalent to the constant (−2m), is the parallel of
“dim V = −2m”.

The relation Pm+1 is more subtle. It is easier to look at the equiv-
alent relation C2m+1, which implies the relation Cl for every l > 2m.
If a single vertex corresponds to some space V , then a collection of
l vertices corresponds to V ⊗l; and, when we sum over all permuta-
tions without signs, we get (a multiple of) the projection onto the
symmetric subspace, Sl(V ). The relation Cl says that this projection
(and hence the target, Sl(V )) is 0. Compare this with the following
statement about Rk for k ≥ 0:

dim Sl(Rk) =

(
l + k − 1

l

)
=

(k + l − 1)(k + l − 2) · · · (k + 1)k

l(l − 1) · · · 2 · 1 .

We can see from this formula that if a space V formally has a dimen-
sion k = −2m, then dim Sl(V ) vanishes precisely when l > 2m. This
is in complete agreement with what we just found about Pm+1.

3.3. An example: Gaussian integration. Let us compute! Con-
sider the well-known Gaussian integral over Rn,

∫

Rn

eq(x,x)/2 dnx =
(2π)

n
2

(det −q)
1
2

where q is an arbitrary negative-definite quadratic form q. The factor
(2π)n/2 is just a normalization factor that could be absorbed into the

measure dnx. (Recall that we identified
∫ (m)

as Lebesgue integration
by translation invariance, which only determines the measure up to
an overall scale factor.) The remaining factor, (det −q)−1/2, is more
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fundamental. Does a similar result hold for
∫ (m)

? To answer this ques-
tion, one would first have to know what a “determinant” of a quadratic
form on a negative-dimensional space is. While there is a good answer
to this question (called the “superdeterminant” or the “Berezinian”;
see, e.g., [Be, page 82]), it would take us too far afield to discuss it in
full. Instead, let us take a slightly different tack. Fix a negative-definite
quadratic form Λ on Rn, and consider the quadratic form q = Λ⊗(δij)
on Rn ⊗ Rk ∼= Rnk. We have det q = (det Λ)k and so we find that

(4)

∫

Rnk

eq(x,x)/2 dnkx = C(det −Λ)−k/2

for some constant C.
Consider now the sum

∑
x,y∈X lxy

x_y in B(X). According to the

voodoo of diagrammatic calculus [Å-II, Section 2], it is in analogy with
a quadratic form on V ⊗n, where n = |X| and V is some vector space
that plays a role similar to Rk in the above discussion. The proposition
below is then the diagrammatic analog of (4), taking k = dim V =
−2m.

Proposition 3.2. For any set X with |X| = n and Λ = (lxy) a
symmetric matrix on RX ,

∫ (m)

exp

(
1

2

∑
x,y∈X

lxy
x_y

)
= (det −Λ)m = (−1)nm(det Λ)m.

Note that other than symmetry there is no restriction on the
matrix Λ. This proposition is a consequence of Lemma 4.2 of [LMO]
and a computation for m = 1 (given in [LMMO]), but we give our
own proof for completeness, and also to provide a more direct link to
typical determinant calculations.

Proof. We are to calculate the reduction modulo Om and Pm+1 of

D1 :=

〈 ∏
x∈X

1

m!

(
∂x^∂x

2

)m

, exp

(
1

2

∑
x,y∈X

lxy
x_y

)〉

X

.

The only terms that can appear in D1 are closed loops. The relation
Om replaces each of these by a number, reducing the result to Q. The
relation Pm+1 is irrelevant and will be ignored in the remainder of the
proof.
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Introduce a new set of variables A (and dual variables ∂A) with
|A| = m, and consider

(5) D2 :=

〈 ∏
x∈X

1

m!

(∑
a∈A

(x,a)

↓
(∂x,∂a)

)m

, exp

( ∑
x,y∈X

∑
a∈A

lxy

(∂x,∂a)

↑
(y,a)

)〉

XA

.

Let us compare D1 and D2. After all relevant gluings, D1 becomes
a sum (with coefficients) of disjoint unions of unoriented loops, each
of which is a polygon of struts whose vertices are colored by elements
of X. Similarly, D2 is also a sum (with coefficients) of a disjoint union
of loops, only that now the loops are oriented and the struts they are
made of are colored by the elements of XA, keeping the A part of
the coloring constant along each loop. In both cases the coefficients
come from the same simple rule, which involves only the X part of
the coloring. We see that each term in D1 with c circles corresponds
to (2m)c terms of D2: for each loop in a given term of D1, choose a
color a ∈ A and an orientation, and you get a term in D2. So we find
that

D2

/
(© = −1) = D1

/
(© = −2m).

Recall that 1
4!
(a + b + c + d)4 = abcd + (non-multilinear terms).

Similarly,

∏
x∈X

1

m!

(∑
a∈A

(x,a)

↓
(∂x,∂a)

)m

=
∏

(x,a)∈XA

(x,a)

↓
(∂x,∂a)

+(terms with strut repetitions).

We assert that terms with strut repetitions can be ignored in the
computation of D2

/
(© = −1). Indeed, for some fixed x0 ∈ X and

a0 ∈ A set α = (x0, a0) and ∂α = (∂x0 , ∂a0), and suppose a strut
repetition like ↓α

∂α
↓α

∂α
occurs within the left operand of a pairing as

in (5). Then, as illustrated in Figure 6, the gluings in the evaluation
of the pairings come in pairs. One easily sees that the number of
cycles differs by 1 for the gluings within each pair, and hence modulo
(© = −1) the whole sum of gluings vanishes.

Now compare D2 to

D3 :=

〈 ∏

(x,a)∈XA

(x,a)

↓
(∂x,∂a)

, exp

( ∑
x,y∈X

∑
a∈A

lxy

(∂x,∂a)

↑
(y,a)

) 〉

XA

.
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α

=
α ∂α ∂α

∂α ∂α
g l u i n g s

α ∂α ∂α

∂α ∂α
g l u i n g s

α
+ . . .· · · · · · · · · · · ·+

gluingsgluings

α α

∂α ∂α

∂α ∂α

· · · · · ·
X×A

Figure 6. Two ways of gluing a repeating strut.

By our assertion, D2 = D3 modulo (© = −1). But D3 looks very
much like the usual formula for the determinant, reducing to

D3

/
(© = −1) =

∑

π∈S(XA)

∏

(x,a)∈XA

lxa, π(xa)(−1)cycles(π)

where (lxa,yb) = Λ⊗ (δab). Using the relationship between the number
of cycles of a permutation π ∈ S(XA) and its signature, (−1)cycles(π) =
(−1)nm sgn(π), we find that

∫ (m)

G = (−1)nm det(lxa,yb) = (−1)nm(det Λ)m

as required. ¤

4. Relating the two integration theories

The classical computation of perturbed Gaussian integration uses
only translation invariance, and a single non-perturbed computation to
determine the normalization coefficient. For negative dimensional in-
tegration translation invariance was proved in Proposition 3.1, and the
non-perturbed computation is in Section 3.3. So the proof of Propo-
sition 1.3 proceeds just as in the classical computation of perturbed
Gaussian integration:

Proof of Proposition 1.3. Recall that we are comparing
∫ (m)

to
∫ FG

on a perturbed Gaussian with variables in X and a non-degenerate
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quadratic part Λ = (lxy):

G = P exp

(
1

2
lxy

x_y

)
.

(Here and throughout this proof, repeated variables should be summed
over X.) From [Å-I, Definition 2.9] we have

(6)

∫ FG

GdX =

〈
exp

(
−1

2
lxy

∂x^∂y

)
, P

〉
,

with, as usual, (lxy) = Λ−1. Indeed, Equation (6) is precisely the de-
finition of formal Gaussian integration, which in itself imitates the
standard recipe for evaluating perturbed Gaussian integrals, where
one sums over all pairings of multiple copies of the inverse quadratic
form with the perturbation term P .

We need to evaluate
∫ (m)

GdX. First separate the strutless part,
P , using a standard trick: (We note that in the first line below we
slightly extend the definition of 〈·, ·〉X̄ , allowing it to have values in
A(X) rather than just A(∅) as in the original Definition 2.1)

∫ (m)

GdX =

∫ (m) 〈
P

/
(x 7→ ∂x̄) , exp

(
1

2
lxy

x_y +
x

|
x̄

)〉

X̄

dX

=

〈
P

/
(x 7→ ∂x̄) ,

∫ (m)

exp

(
1

2
lxy

x_y +
x

|
x̄

)
dX

〉

X̄

.

Now we complete the square in the integral:

∫ (m)

exp

(
1

2
lxy

x_y +
x

|
x̄

)
dX

= exp

(
−1

2
lxy

x̄^ȳ

) ∫ (m)

exp

(
1

2
lxy

x_y +
x

|
x̄

+
1

2
lxy

x̄^ȳ

)
dX.

A short computation (left to the reader) shows that we have completed
the square:

exp

(
1

2
lxy

x_y +
x

|
x̄

+
1

2
lxy

x̄^ȳ

)
= exp

(
1

2
lxy

x_y

)/
(x 7→ x + lxyȳ).
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But now, by Propositions 3.1 and 3.2,
∫ (m)

exp

(
1

2
lxy

x_y +
x

|
x̄

+
1

2
lxy

x̄^ȳ

)
dX

=

∫ (m)

exp

(
1

2
lxy

x_y

)
dX = (−1)nm(det Λ)m,

and so∫ (m)

GdX =

〈
P

/
(x → ∂x̄) , exp

(
−1

2
lxy

x̄^ȳ

)
· (−1)nm(det Λ)m

〉

X̄

= (−1)nm(det Λ)m

∫ FG

GdX

/
(Om, C2m+1). ¤

Remark 4.1. As in the classical case (see, e.g., the Appendix of [Å-I]),
this proof can be recast in the language of Laplace (or Fourier) trans-
forms.

5. Proposition 1.3 implies Theorem 1

Let L be an n-component regular link with linking matrix Λ hav-
ing σ+ positive eigenvalues and σ− negative eigenvalues. Lemma 1.1
and Proposition 1.3 imply that in the quotientA◦≤m(∅)/(Om, Pm+1) '
A≤m(∅) we have

(7) Å0(L) = (−1)nm(det Λ)−mLMO
(m)
0 (L).

Applying this equality to U±
x , the x-labeled unknot with ±1 framing,

we find that

Å0(U
+
x ) = (−1)mLMO0(U

+
x ) and Å0(U

−
x ) = LMO0(U

−
x ).

These are the renormalization factors used in the definition of Å and
LMO(m), respectively. Using them and Equation (7) once again, we

can compare Å(M) and LMO(m)(M) as follows:

Å(M)= Å0(U
+
x )−σ+Å0(U

−
x )−σ−Å0(L)

=(−1)(n−σ+)m(det Λ)−mLMO0(U
+
x )−σ+LMO0(U

−
x )−σ−LMO0(L)

= | det Λ|−m LMO(m)(M) = |H1(M)|−m LMO(m)(M).

Finally, Equation (1) of Theorem 1 now follows from the fact that

LMO(M) takes its degree m part from LMO(m)(M).
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6. Some philosophy

The impatient mathematical reader may skip this section; there
is nothing with rigorous mathematical content here. For the moment,
the material in this section is purely philosophy, and not very well-
developed philosophy at that.

This interpretation of
∫ (m)

as negative-dimensional formal inte-
gration probably seems somewhat strange. After all Chern Simons
theory, the basis for the theory of trivalent graphs (the spaces A and
B), and much of the theory of Vassiliev invariants, takes place very
definitely in positive dimensions: the vector space associated to a ver-
tex is some Lie algebra g. To integrate over these positive dimensional
spaces, a different theory is necessary, as developed in Part II of this
series [Å-II].

One potential answer to this problem is to forget about the Lie
algebra for the moment and just look at the structure of diagrams.
There are at least three different reasonably natural sign conventions
for the diagrams under consideration [Ko1, Th]. The standard choice
is to give an orientation (ordering up to even permutations) of the
edges around each vertex. But another natural (though usually less
convenient) choice is to leave the edges around a vertex unordered
and, instead, give a direction on each edge and a sign ordering of
the set of all vertices.4 But now look what happens to the space B:
because of the ordering on the vertices, the diagrams are no longer
completely symmetric under the action of permuting the legs; they are
now completely anti-symmetric. This anti-symmetry of legs is exactly
what we would expect for functions of fermionic variables or functions
on a negative-dimensional space. Furthermore, the integration map∫ (m)

is quite suggestive from this point of view: it looks like evaluation
against a top exterior power of a symplectic form on a vector space,
which is a correct analogue of integration.

Alternatively, we could try to keep the connection with physics
and find a physical theory that exhibits this negative-dimensional be-
havior. Fortunately, such a theory has been found: it is the Rozansky

4In this discussion, we assume that all vertices of the graphs have odd valency
(as holds for all diagrams considered in this paper). See [Ko1, Th] for details on
dealing with diagrams with vertices of even valency.
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Witten theory [RW, Ko2, Ka]. In this theory weight systems are con-
structed from a hyper-Kähler manifold Y of dimension 4m. The really
interesting thing for present purposes is that the factors assigned to
the vertices are holomorphic one-forms on Y , which anti-commute (us-
ing the wedge product on forms). (In keeping with the above remarks
about signs, each edges is assigned a symplectic form on Y , which is
anti-symmetric.) So in this case, there is a kind of (−2m)-dimensional
space associated to vertices. (But note that this space is “spread out”
over Y : it is the parity-reversed holomorphic tangent bundle.)

Finally, it is interesting to note that the definition of
∫ (m)

is more

general than that of
∫ FG

, and the proofs are equally simple. On the

other hand,
∫ FG

has some advantages. It is easier to compute, as you
can see in Appendix A. Its philosophical meaning is much clearer and
it takes values in A(∅) directly, rather than in some quotient. Also,
it makes Part IV of this series possible — its relationship with Lie
algebras is clearer.

Appendix A. A computational example

In order to make more concrete the definitions of the two types
of integrals we consider in this appendix we will integrate a formal

power series with
∫ (m)

and with
∫ FG

and check that the answer obeys
Proposition 1.3. We will also see how the combinatorial factors work
in practice.

We will integrate the following “function” in B(x, y):

f(x, y) = exp




x x x

y

+

x

y

+
1

2
y y


 .

Since our drawings will get crowded, we will replace the labels x and
∂/∂x by a solid circle •, and the labels y and ∂/∂y by a open circle ◦.
We will write IFG for the formal Gaussian integral of f , and I(m) for
the negative-dimensional integral of f .

A.1. Computing the formal Gaussian integral. To compute the

first few terms of IFG =
∫ FG

f(x, y) dx dy, first note that f takes the
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form of a perturbed Gaussian

f = P × exp

(
lij

i_j

)

= exp

( )
× exp

(
+

1

2

)

with quadratic part Λ = (lij) =
(

0 1
1 1

)
. Then the prescription for the

formal Gaussian integral of f involves pairing the perturbation with
a quadratic part given by −Λ−1 =

(
1 −1
−1 0

)
:

IFG =

〈
exp

( )
, exp

(
− +

1

2

)〉
.

Expanding the exponential on the left of the pairing, we get

IFG =

〈
1, exp

(
− +

1

2

)〉

+

〈
, exp

(
− +

1

2

)〉
+ · · ·

Each left side has a definite number of vertices of each color and has
a non-zero pairing with only one term in the exponential on the right,
so we can simplify this to

IFG = 〈1, 1〉+

〈
,−1

2

〉
+ · · ·

Now we evaluate the pairing. Note how the combinatorics of the pair-
ing with exponentials of struts works out: we end up summing over all
ways of pairing the end points of P , with coefficients given by products
of appropriate entries of −Λ−1. All other combinatorial factors cancel.

IFG = 1− − − + · · ·

= 1− 2 − + · · · .

A.2. Computing the negative-dimensional integral
∫ (m)

. We
now turn to the negative-dimensional integral of f . To be able to
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compare the results, we must have m at least 2; let us therefore set
m = 2.

I(2) =

〈
f,

1

2!

(
1

2

)2

× 1

2!

(
1

2

)2
〉

=

〈
exp

(
+ +

1

2

)
,

1

64

〉
.

The right side has four x-vertices and four y-vertices. There are only
two terms in the exponential on the left which have non-zero pairing
with the right side:

I(2) =

〈
1

24
+

1

2
,

1

64

〉
.

To evaluate the pairing, notice that the combinatorial factors on the
right side cancel, and we end up summing over all ways of pairing the
vertices of the same color on the left, each appearing with coefficient
1.

I(2) =
1

24

(
+ + + + + + + +

)

+
1

2

(
+ + + + + + + +

)

Now apply the Om relation with m = 2, which replaces each circle by
−4.

I(2) =
1

24

(
16− 4− 4− 4 + 16− 4− 4− 4 + 16

)

+
1

2

(
−4 + + − 4

+ + − 4 + +
)

= 1− 2 − .

Note that this matches the result we found from the formal Gauss-
ian integration, which is expected since det Λ = −1 and the degree of
the non-trivial elements is even.
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