Khovanov Homology

Vertices: All fillings of \sim with $)$ (or with \longrightarrow
Edges: All fillings of $I \times \sim$ with $I \times 3=(=3$
with precisely one

Kor: Complexes
Mat: Matrices
<...>: Formal linear combinations
Cob: Cobordisms

Where does it live? In $\operatorname{Kom}(\operatorname{Mat}(<\operatorname{Cob}>/\{S, T, 4 T u\}) /$ homotopy .

It looks like Jones! Indeed, a TQFT takes it to a But is it invariant?
 complex whose graded Euler characteristic is the Jones polynomial.
(With similar proofs for R-II and R-III)
$S: \sim=0$
T:

A functor?

1. It is stronger than the Jones polynomial.
2. It is less understood than the Jones polynomial:
a. Does it have a topological interpretation?
b. Does it have a "physical" interpretation?
c. Does it also work for other quantum invariants?
d. Does it work for manifolds and for knots in manifolds?
e. Is there a relation with finite-type invariants?
f. Does it work for "virtual knots"?
3. Jacobsson, Khovanov: It is a functor!!! (from knots and cobordisms to complexes and morphisms)
