
ON THE VASSILIEV KNOT INVARIANTS

DROR BAR-NATAN

Appeared in Topology 34 (1995) 423–472.

Abstract. The theory of knot invariants of finite type (Vassiliev invariants) is described.
These invariants turn out to be at least as powerful as the Jones polynomial and its numer-
ous generalizations coming from various quantum groups, and it is conjectured that these
invariants are precisely as powerful as those polynomials. As invariants of finite type are
much easier to define and manipulate than the quantum group invariants, it is likely that
in attempting to classify knots, invariants of finite type will play a more fundamental role
than the various knot polynomials.
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1. Introduction

1.1. A sketchy introduction to the introduction. Any numerical knot invariant V can
be inductively extended to be an invariant V (m) of immersed circles that have exactly m
transversal self intersections using the formulas

V (0) = V,

V (m)
(

B

)
= V (m−1)

( )
− V (m−1)

( )
. (1)

We know from multi-variable calculus that differences are cousins of derivatives, and so we
wish to think of (1) as the definition of the mth partial derivative of a knot invariant in
terms of its (m− 1)st partial derivatives. (In a knot projection there can be many crossings,
and so one can ‘differentiate’ with respect to many different ‘variables’. Hence we think of
(this corner of) knot theory as multi-variable calculus).

An invariant V is called “(A Vassiliev invariant) of type m” if its (m + 1)st derivative
vanishes identically1. Just like in calculus, V (m+1) ≡ 0 implies that V (m) is a constant, in
some sense. This ‘constant’ is actually a collection of constants corresponding to the different
possible partial derivatives of V . From the special nature of the “function” V (it is a knot
invariant), it follows that there are some relations among these constants. A collection of
constants satisfying these relations is called a weight system. The purpose of this paper is
to discuss the following questions:

• Which of the well-known knot invariants are Vassiliev invariants? (See theorems 2,
3, and 5).
• What are weight systems in a more precise language? What are the relations that a

weight system has to satisfy? (See definitions 1.6, 1.7, 1.9, and theorem 6).

1Having the analogy with calculus in mind, a better name would have been “a polynomial invariant”. But
unfortunately, this name is already used for something else.
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• Is it always possible to ‘integrate’ a weight system m times and get a knot invariant?
(See theorem 1).
• Knot invariants can be added and multiplied. Knots can be multiplied (the operation

of ‘connected sum’) and therefore knot invariants can be co-multiplied. What are the
operations that one can perform on a weight system? Is the space of weight systems
a Hopf algebra? (See theorems 7, 8, and 9).
• Can one classify all weight systems? (See theorems 4, 10, 11, 12 and conjectures 1

and 2).

Quite unexpectedly, given a representation of a semi-simple Lie algebra there is a simple
construction of a weight system. In fact, a closer look at weight systems reveals that for
many purposes they are as good as Lie algebras, despite their a-priori different appearance.
The following further questions therefore arise:

• Which part of the theory of Lie algebras can be translated to the language of weight
systems? (See e.g. section 5).
• Do all weight systems come from Lie algebras? (See the statistics in section 6.1,

theorem 11 and conjectures 1 and 2).

The following outstanding problem will not be discussed in this paper:

Problem 1.1. Is there an analog of Taylor’s theorem in our context — can an arbitrary
knot invariant be approximated by Vassiliev invariants? Do Vassiliev invariants separate
knots?

An affirmative answer to the above question will, of course, give tremendous further im-
petus to studying Vassiliev invariants.

1.2. Acknowledgement. I wish to thank the many people who taught me about Vassiliev
invariants, and the many people who were patient enough to listen to my own ideas about
the subject. Among others, these include: V. I. Arnold, A-B. Berger, J. Birman, R. Bott,
S. Chmutov, S. Duzhin, P. Lee, X-S. Lin, G. Masbaum, G. Wetzel, S. Willerton, and E. Wit-
ten. I am particularly grateful to M. Kontsevich, for inventing a considerable part of the
theory described in these pages, for our many conversations, and for his careful reading of
an earlier version of this paper.

1.3. Weight systems and invariants of finite type. Let F be a field of characteristic
zero2. Any F-valued invariant V of oriented knots in an oriented3 three dimensional manifold
M3 can be extended to be an invariant of immersed circles in M3, which are allowed to have
some transversal self intersections, using the following definition:

Definition 1.2. Suppressing the superfluous superscripts of (1), set

V
(

B

)
= V

( )
− V

( )
. (2)

As usual in knot theory and as will be the standard throughout the rest of this paper,
when we write , or B , we think of them as parts of bigger graphs which are identical
outside of a small sphere, inside of which they look as in the figures. Notice also that in an

2In fact, a considerable fraction of the results proven here are true even with the field F replaced by an
arbitrary Abelian group; see problem 7.3.

3Przytycki [34] noticed that Vassiliev invariants can be defined on non-orientable manifolds as well.
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oriented manifold the notion of an overcrossing (undercrossing) is well defined and does not
depend on a choice of a planar projection. See for example [21, pp. 13].

Definition 1.3. Let m be a non-negative integer. An invariant V of oriented knots in an
oriented three dimensional manifold M3 is called an invariant of type m, if V vanishes on
“knots” that have more than m self intersections:

(
the

Birman-Lin
condition

)

V



 B B . . . B

︸ ︷︷ ︸

>m



 = 0.

An invariant V of oriented knots in an oriented three dimensional manifold M3 is called a
Vassiliev invariant [42, 43], or an invariant of finite type, if it is of type m for some m ∈ N.
The space V of all Vassiliev invariants is filtered, with Vm = {invariants of type m}.

Remark 1.4. Vassiliev’s original approach is very different from ours. He derives his class
of invariants from certain topological considerations that involve viewing the space of all
embeddings of S1 into R3 as the complement of the space of singular immersions in the
space of all immersions. Our definition follows the ‘Birman-Lin axioms’ of [10] and can be
extracted from Vassiliev’s more involved theory.

Throughout the rest of this paper we will consider only the case of M3 = R3. Let us now
turn to the study of the mth ‘derivative’ of a Vassiliev invariant:

Definition 1.5. A chord diagram (CD) is an oriented circle with finitely many chords marked
on it, regarded up to orientation preserving diffeomorphisms of the circle. Denote the col-
lection of all chord diagrams by Dc (c for ‘chord’). This collection is naturally graded by the
number of chords in such a diagram. Denote the piece of degree m of Dc by GmD

c. GmD
c is

simply the collection of all chord diagram having precisely m chords.

By convention, we will always orient the circle in a chord diagram counterclockwise, and
always use dashed lines for the chords. For examples, the collection G3D

c of chord diagrams
of degree 3 is G3D

c =
{

, , , ,
}
.

Definition 1.6. An F-valued weight system of degree m is a function W : GmD
c → F having

the following properties:

(1) If D ∈ GmD
c has an isolated chord — a chord that does not intersect any other chord

in D, then W (D) = 0. This property is called framing independence.
(2) Whenever four diagrams S, E, W , and N differ only as shown in figure 1, their

weights satisfy

W (S)−W (E) = −W (W ) +W (N). (3)

This property is called the 4T (4 Term) relation.

Let W denote the graded vector space of all weight systems.

The first theorem of this paper says that over the real numbers the above two notions are
essentially equivalent:

Theorem 1. Over R, the graded vector space associated with the filtered vector space V of
Vassiliev invariants is W. More precisely:
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Figure 1. The diagrams S, E, W , and N . (The dotted arcs represent parts of the diagrams

that are not shown in the figure. These parts are assumed to be the same in all four diagrams)

(1) (Proof on page 11) For a given non-negative integer m there is a naturally defined map
V 7→ Wm(V ) which to any given type m F-valued Vassiliev invariant V associates a
degree m F-valued weight system Wm(V ).

(2) (Kontsevich [25]) (Proof on page 27) Restricting to the case F = R, there is a
naturally defined map W 7→ V (W ) which to any given R-valued weight system of
degree m associates a type m R-valued Vassiliev invariant V (W ).

(3) (Proof on page 27) The above two maps are nearly each other’s inverse — for any
given W one has W = Wm(V (W )), and for any given V the invariants V and
V (Wm(V )) differ by a knot invariant of type m− 1.

1.4. There are many invariants of finite type.

Theorem 2. (Bar-Natan [5, 6]) (Proof on page 10). Each coefficient of the Conway poly-
nomial is an invariant of finite type.

Theorem 3. (Birman-Lin, [10]) (Proof on page 11) After a suitable change of variables,
each coefficient in the Taylor expansion of the Jones [20], HOMFLY4 [19], and Kauffman [22]
polynomials is an invariant of finite type.

Theorem 4. (Bar-Natan [5, 6]) Let g be a finite dimensional Lie algebra over a field F, t
an Ad-invariant symmetric non-degenerate bilinear form on g, and R a finite dimensional
representation of g. Let m be a non-negative integer.

(1) (Proof on page 14) Given this information, there is a natural construction of an
associated functional5 Wg,R,m : GmD

c → F satisfying the 4T identity (3).
(2) (Proof on page 20) There is a canonical way to ‘renormalize’ Wg,R,m to a weight

system Ŵg,R,m.

Theorem 5. (Lin, [28]) After a suitable change of variables, each coefficient in the Taylor
expansion of the Reshetikhin-Turaev ‘quantum-group’ invariants [35, 36, 37, 41] correspond-
ing to a quantization of a triple {g, t, R} as in theorem 4 is an invariant of finite type.
Furthermore (Piunikhin, [33]), the weight systems underlying those invariants are precisely
those constructed in theorem 4. (See remarks 2.2, 2.3, and 4.8 and problem 4.9).

4The HOMFLY polynomial is named after the initials of 6 of its discoverers, Hoste, Ocneanu, Millet,
Freyd, Lickorish and Yetter. In fact, it was also discovered simultaneously by Przytycki and Traczwyk and
therefore, following L. Rudulph, it should more accurately be called “the LYMPH-TOFU polynomial”, with
the last U standing for the Unknown further discoverers.

5t is normally taken to be given by matrix trace in the defining representation, and is always suppressed
from the notation.
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1.5. The algebra A of diagrams. For some purposes, it is better to consider weight
systems as linear functionals over a graded vector space Ac.

Definition 1.7. Ac is the quotient space

Ac = span (Dc) / span {all 4T relations} .

Namely, Ac is the quotient of the vector space freely generated by all chord diagrams by the
subspace spanned by all relations of the form:

.

As the 4T relation is homogeneous, Ac inherits a gradation from Dc.

Clearly, a weight system of degree m is just a linear functional on GmA
c which vanishes

on classes represented by a chord diagram that has an isolated chord.
The space Ac has an equivalent description as follows:

Definition 1.8. A Chinese Character Diagram6 (CCD) is a connected graph made of a
single oriented circle and a certain number of unoriented dashed lines, which are allowed to
meet in two types of trivalent vertices:

(1) Internal vertices in which three dashed lines meet. These vertices are oriented —
one of the two possible cyclic orderings of the arcs emanating from such a vertex is
specified.

(2) External vertices in which a dashed line ends on the circle.

The collection of all Chinese character diagrams will be denoted by Dt (t for ‘trivalent’).

By convention, the circle in a CCD is always oriented counterclockwise, and so are the
internal vertices. Also, as higher than trivalent vertices are not allowed in a CCD, what
appears in a picture to be a vertex of order 4 is not a vertex at all — it is just a pair of arcs
passing each other without intersection. An example is in figure 2.

Figure 2. A Chinese Character Diagram (CCD) together with the conventional way of

drawing it, as outlined in the text.

Clearly, there is an even number of vertices in a CCD. We will use half the number of
vertices to grade Dt. A chord diagram is also a CCD, and it is easy to see that the gradations
are compatible: GmD

c ⊆ GmD
t.

6This joke is due to Morton Brown. When the circle is stripped off a Chinese character diagram such as

, what remains is a ‘Chinese character’ like .

6



Definition 1.9. Let the vector space At be the quotient

At = span
(
Dt
)
/span {all STU relations} .

An STU relation is a relation of the form S = T − U , where the diagrams S, T , and U
are identical outside of a small circle, inside of which they look as in figure 3. As the STU
relation is homogeneous, At inherits a gradation from Dt.

S T U

Figure 3. The diagrams S, T , and U , and the STU relation.

Remark 1.10. Notice that the 4T relation holds in At:

.

(Both equalities in the above equation hold in At because of the STU relation). This implies
that the inclusion Dc →֒ Dt descends to a linear map φc : Ac → At.

Theorem 6. (Proof on page 15) The map φc : Ac → At is an isomorphism. Furthermore,
the following two identities hold in At:

(1) Antisymmetry of internal vertices:

= 0.

(2) The IHX identity:

. (4)

As At and Ac are anyway isomorphic, we will denote both (either) of them by the same
symbol A. Various pieces of the following theorem were discovered independently by Bar-
Natan [5, 6], Kontsevich [25] and Lin [29]:

Theorem 7. (Proof on page 16) A has a naturally defined product · and a naturally defined
co-product ∆, which together make it a commutative and co-commutative Hopf algebra7.
Furthermore, there is a naturally defined sequence of co-algebra automorphisms {ψq}∞q=−∞ of
A reminiscent of the Adams operations of K-theory. These automorphisms satisfy ψq ◦ψp =
ψqp.

7NOT in the graded (super) sense. Namely, elements in it honestly satisfy a · b = b · a, with no signs.
7



1.6. The primitive elements of A. By the structure theory of Hopf algebras we know
that A is the symmetric algebra generated by the primitive elements of A:

A = S(P(A)), P(A) = {a ∈ A : ∆(a) = a⊗ 1 + 1⊗ a}. (5)

The following description of A is better suited for the study of P(A):

Definition 1.11. A Chinese Character (CC) is a (possibly empty) graph whose vertices
are either trivalent and oriented (in the sense of definition 1.8), or are univalent. The
trivalent vertices in such a graph are called internal, while the univalent vertices are called
external. The collection of all Chinese characters that have at least one external vertex in
each connected component will be denoted by C. It is graded by half the number of vertices
in a character.

Figure 4. A Chinese Character (CC) of degree 8. As in the case of CCDs, all trivalent

vertices are oriented counterclockwise and all apparent vertices of valency higher than 3 are

not vertices at all. This CC has four connected components.

Let B be the quotient space

B = span (C) /{anti-symmetric vertices and IHX relations} . (6)

Namely, B is just the vector space generated by Chinese characters with exactly the two
relations of theorem 6 imposed. B inherits a grading from C.

Theorem 8. (Kontsevich [25]) (Proof on page 29) The spaces A and B are naturally iso-
morphic via maps σ̄ : A → B and χ̄ : B → A. Furthermore, if a space P is defined just like
B only with connected Chinese characters replacing arbitrary Chinese characters, then the
above isomorphism identifies P and P(A).

The dual space8 A∗ of the Hopf algebra A is also a Hopf algebra, and thus one might wish
to investigate the primitive elements of A∗. Let P ′(A∗) be the elements of degree different
than 1 in P(A∗).

Theorem 9. (1) (Proof on page 20) S(P ′(A∗)) is isomorphic to the spaceW of all weight
systems.

(2) (Lin [29], Kontsevich [25], Bar-Natan) (Proof on page 34) Via the correspondence of
theorem 1, the weight systems in P ′(A∗) correspond to additive Vassiliev invariants
— Vassiliev invariants which are additive under the operation of taking the connected
sum of two knots.

8A∗ is the graded dual of A defined by A∗ =
⊕

(GmA)∗.
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1.7. How big are A, W and P? One way to answer this question is by explicitly writing
all diagrams and all relations, and using a computer to reduce the resulting matrix. The
results are summarized in the table in page 34. Computer power is limited, however, and
one might hope for better:

Conjecture 1. All weight systems come from Lie algebras as in theorem 4. In other words,
the weight systems produced in theorem 4 span the space of all weight systems.

Definition 1.12. A marked surface is a compact two dimensional smooth surface with a
choice of finitely many tangents (markings) to its boundary, regarded up to a diffeomorphism.
(See figure 5). Let M be the vector space spanned by the set of marked surfaces that have
at least one marking on each connected component.

Figure 5. A marked surface with two boundary components

Theorem 10. (Kontsevich [25], Bar-Natan) (Proof on page 37) There is a natural linear
map Φ : B →M.

Theorem 11. (Proof on page 43) The pullback (Φ ◦ σ̄)∗M∗ of M∗ via Φ ◦ σ̄ is the subring
of A∗ spanned by the linear functionals on A generated (as in theorem 4) by Lie groups in
the families SO and GL and all of their representations. (Φ ◦ σ̄)∗M∗ also contains in it
the linear functionals on A generated by all representations of Abelian, symplectic and Spin
groups.

Remark 1.13. The “philosophical father” of theorems 8, 10, and 11 is M. Kontsevich [25]. He
suggested a somewhat weaker version of Φ, whose image is the space spanned by normalized
orientable (in the sense of definition 6.11) marked surfaces, and conjectured theorem 11 for
his version of Φ and only for the groups in the family GL. The stronger version of Φ, the
fact that our Φ includes Kontsevich’s (lemma 6.49) and the proofs of theorems 11 and 12
are due to the author.

Remark 1.14. There is a natural extension (See section 2.3) of the theory of Vassiliev invari-
ants to framed links. Framed links have various natural cabling operations (see definitions
3.13 and 6.21 and exercise 6.43) and, dually, invariants of framed links have various natural
cabling operations. These operations take Vassiliev invariants to Vassiliev invariants of the
same type (see exercises 3.14, 6.22 and 6.43).

Theorem 12. (Proof on page 48) The ring of Vassiliev framed knot invariants coming from
the writhe, the HOMFLY and the Kauffman polynomials and all of their cablings corresponds
via theorem 1 to the pullback (Φ ◦ σ̄)∗M∗.

9



Conjecture 2. (See the discussion in page 48) Linear functionals on M separate points
in A; that is, A∗ = (Φ ◦ σ̄)∗M∗. Theorem 11 implies that this conjecture is stronger than
conjecture 1.

1.8. Odds and ends. The last section of the paper contains an incomplete survey of the
literature available on Vassiliev invariants, one piece of bad news — that conjecture 1 and
the completeness of Vassiliev invariants (problem 1.1) cannot be true at the same time, and
some questions.

1.9. Summary of spaces and maps.

1.9.1. Spaces.

collectively called A (theorem 6)
︷ ︸︸ ︷

chord diags.
def. 1.7

trivalent
diags.

def. 1.9

linear diags.
eq. (8)

Chinese chars.
eq. (6)

marked diags.
def. 6.3

marked surfs.
def. 1.12

Ac
φc: inclusion
−−−−−−−→←−−−−−−−

theorem 3.1
At

φl:
closing
to
a circle←−−−−−−−−−−−−−−→

lemma 3.1
Al

χ̄:
sum over
orderings

←−−−−−−−−−−−−−−→
σ̄: theorem 8

B
µ :marking
−−−−−−−→

1-1?
Bm

τ : thickening
−−−−−−−−→
isomorphism

by
theorem 14

M



yWg,R,m TA



y←

given
g, t

(ex. 5.1)
→



yTB

Φ
conjecture 2: 1-1?

sect.
6.4

↓
〈·, ·〉
↑

F
given R
←−−−−−− U(g)g

PBW
S(g)g L

1.9.2. Dual spaces.

Vassiliev
invts.

def. 1.3

weight
systems
def. 1.6

V
theorem 1−−−−−−−−−−−−→←−−−−−−−−−−−−

Wm:
“differentiation”
defined up to

type m
V : “integration”

W
thm. 9 part 1:
←−−−−−−−−

no real loss
of information

A∗ (Φ◦σ̄)∗

←−−−−−−−−−−−−−−−−−
conjecture 2: onto?

image analyzed in thm. 11,
12

M∗

2. The basic constructions

2.1. The classical knot polynomials.

2.1.1. Proof of theorem 2. Let C(K)(z) be the Conway polynomial of a knot K, and use
the same symbol C to denote the natural extension (2) of the Conway polynomial to knots
having self intersections. Then by the definition of the Conway polynomial [13, 21],

C
(

B

)
= C

( )
− C

( )
= z · C

( )
.

Therefore if K has more than m double points, C(K) is divisible by at least zm+1 and hence
the coefficient of zm in C(K) vanishes. This implies that the mth coefficient of the Conway
polynomial is a Vassiliev invariant of type m. �
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2.1.2. Proof of theorem 3. The idea is exactly the same as in the previous proof. In one of its
standard parametrizations, the HOMFLY polynomial [19] is a function P of two parameters
q and N which satisfies the identity

qN/2P
( )

− q−N/2P
( )

= (q1/2 − q−1/2)P
( )

.

Clearly if one changes variables to q = ex and expands in powers of x, the above equation
can be rewritten in the form

P
( )

− P
( )

= x · (some mess).

The precise form of the ‘mess’ in the right side of the above equation is immaterial. What
ever it is, the same argument as in the previous proof carries through and we see that (in this
parametrization) the mth coefficient of the HOMFLY polynomial is a Vassiliev invariant of
type m. The Jones polynomial is just the N ≡ 2 specialization of the HOMFLY polynomial,
and thus the same proof works for the Jones polynomial as well. Similar considerations also
work in the case of the Kauffman polynomial. �

Remark 2.1. The Conway polynomial proof and idea to substitute q = ex and expand in
powers on x are due to the author. The argument in the HOMFLY case was completed by
Birman and Lin in [10].

Remark 2.2. Similar arguments can be used to prove theorem 5. A complete proof can be
found in Lin, [28] and Piunikhin, [33]. See also remark 4.8.

Remark 2.3. In fact, similar arguments can prove a slightly stronger theorem — that ev-
ery knot invariant coming from a deformation of the identity solution of the Yang-Baxter
equation can be re-expressed in terms of Vassiliev invariants.

2.2. Constructing a weight system from a Vassiliev knot invariant. Let V be a knot
invariant of type m, and let D ∈ GmD

c be a chord diagram of degree m. An embedding of
D in R3 will be an immersion KD : S1 → R3 of the circle into R3 whose only singularities
are transversal self intersections and which satisfies:

KD(θ) = KD(θ′) ⇐⇒ (θ = θ′) or
(
θ and θ′ are the two
ends of a chord in D

)

.

For example,

D = −→ KD = .

If KD and K̄D are two embeddings of D, then one can get from one to the other by a
sequence of ‘flips’, in which an overcrossing is replaced by an undercrossing . Each
such flip does not change the value of V (KD) — by definition 1.2 the change in the value
of V (KD) when such a flip is performed is given by V evaluated on a knot with m + 1
double points, and this is 0 by the Birman-Lin condition of definition 1.3. Thus one can
unambiguously set

W (D) = Wm(V )(D) = V (KD).

Proof of part (1) of theorem 1. We need to show that W is a weight system. First consider
the case where D has an isolated chord. Then KD can be chosen to look like in figure 6.
Using equation (2) on the point P of figure 6, we get

W (D) = V (KD) = V (Ko
D)− V (Ku

D),
11



where Ko
D (Ku

D) is the version of KD in which the double point P was replaced by an
overcrossing (undercrossing). ButKo

D andKu
D are ambient isotopic, and thereforeW (D) = 0.

P

P

P

Figure 6. The knot corresponding to a diagram having an isolated chord. The ends of the

isolated chord are mapped to the point P .

Next let SW be the almost saturated (i.e. having m − 1 self-intersections) knot shown
(partially) in figure 7. Pieces of the x and y axes near the origin serve as arcs in that knot,
as well as a third line z′ parallel to the z axis but transversing the x − y plane South-West
of the origin. Let NE be the same, only with the third line z′ moved to transverse the x− y
plane North-East of the origin. There are two ways to calculate Vi(NE) in terms of Vi(SW )
and the weights of saturated knots (knots having precisely m double points) using the flip
relation — by moving z′ from SW to NE along the two dotted paths in figure 7. The two
ways must yield the same answer, and therefore the four saturated knots corresponding to z′

intersecting the x and y axes South, East, West and North of the origin have diagrams whose
weights are related. With the sign convention of (2), this relation is seen to be (3). �

z’

S

N

EW

y

x

Figure 7. The graph SW and the two ways of getting from it to NE. Notice that z′ is

perpendicular to the plane and therefore appears as a single dot.

2.3. Framed links.

Definition 2.4. A framed knot is a knot K together with a choice of homotopy class in
the space of never vanishing sections of the normal bundle of K. A framed link is a set of
disjoint framed knots.

Exercise 2.5. Check that there is no difficulty in extending definitions 1.2 and 1.3 to framed
knots. Show that the construction in the previous section carries through with only one
change — if V is a Vassiliev invariant of framed knots and D has an isolated chord,
Wm(V )(D) does not necessarily vanish.

Exercise 2.6. Show that there is a simple extension of definitions 1.2 and 1.3 and of the
theory of the previous section to framed links. The main difference is that chord diagrams
will now have many circles instead of just one.

12



2.4. Constructing invariant tensors from Lie algebraic information. In this section
we will discuss a general method for constructing invariant tensors from a certain type of
diagrams and some Lie algebraic information. When restricted to chord diagrams, this
construction produces weight systems.

Let g be a finite dimensional Lie algebra over a field F, t an Ad-invariant symmetric
non-degenerate bilinear form (a metric) on g (the Killing form of g is an example if g is
semi-simple), and let R a finite dimensional representation of g. The objects (g, t, R) can all
be regarded as tensors:
The Lie algebra. A Lie algebra g is a vector space (also denoted by g) together with

a distinguished element (tensor) f̃ of g∗ ⊗ g∗ ⊗ g called the Lie bracket, subject to some
well known requirements called antisymmetry and the Jacobi identity. The bilinear form t
induces an isomorphism of g and g∗, and so f̃ corresponds to some tensor f ∈ g∗ ⊗ g∗ ⊗ g∗.
The tensor f is totally antisymmetric. We will represent it by a graph:

g∗
g∗

g∗
←→ f ∈ g∗ ⊗ g∗ ⊗ g∗.

(The internal vertex in the above graph should be oriented, otherwise it is not clear which
order its external vertices should be taken with so that they correspond to the three g∗’s
on the r.h.s. of the correspondence. As usual, if no orientation is specified, we pick the
counterclockwise orientation.)
The bilinear form. The bilinear form t is a tensor in g∗ ⊗ g∗. Its inverse is a tensor
t−1 ∈ g⊗ g. We will represent these two tensors by graphs:

g∗  
 g∗ ↔ t ∈ g∗ ⊗ g∗ ; g  

 g ↔ t−1 ∈ g⊗ g.

The representation. A representation R is a vector space (also denoted by R) together
with a distinguished tensor r in g∗ ⊗ R⊗ R∗. We will represent it by a graph:

g∗
R

R∗
←→ r ∈ g∗ ⊗R⊗ R∗.

For completeness, we will also have a graphical representation for the identity I ∈ End(R):

R∗

−−−−→R ←→ I ∈ R∗ ⊗R.

Let D be a diagram made of those components as above — dashed lines, directed full
lines, oriented trivalent vertices in which three dashed lines meet, trivalent vertices in which
a dashed line ends on a directed full line, ‘beginnings’ of full lines marked by an R∗, ‘ends’
of full lines marked by an R, and ‘ends’ of dashed lines marked by either a g or a g∗. To
such a diagram we associate a tensor

T (D) = Tg,R(D) ∈
⊗

univalent vertices
v of D

(
the vector space
marked near v

)

.

The construction of T (D) is simple. Simply separate D to a ‘union’ of its components,
consider what you’ve got as a tensor in some higher tensor product of the spaces involved,
and contract the obvious pairs of spaces and their duals.

13



Example 2.7. We get a tensor Ω =
R

R∗

R

R∗ ∈ R ⊗R
∗ ⊗R ⊗R∗ via

R

R∗

R

R∗ −→
R

R∗

g∗ g  
 

g g∗
R

R∗
,

surrounding by a box pairs of spaces that are to be contracted, we get

−→
R

R∗

g∗g
 
 

gg∗ R

R∗
.

In other words, Ω is the image of r ⊗ t−1 ⊗ r ∈ (g∗ ⊗R⊗ R∗) ⊗ (g⊗ g) ⊗ (g∗ ⊗ R⊗ R∗)
under the map

(g∗ ⊗ R⊗ R∗)⊗ (g⊗ g)⊗ (g∗ ⊗ R⊗ R∗)
contract spaces #1 and #4
−−−−−−−−−−−−−−−→

and spaces #5 and #6
R⊗ R∗ ⊗ R⊗ R∗.

Example 2.8. If we start from a closed diagram — a diagram with no external vertices, we
just get a scalar in the ground field F. It is an instructive exercise to verify that if {ga}

dimg
a=1

is an orthonormal basis of g relative to the scalar product t, then

T ( ) =

dim g
∑

a,b,c=1

fabc tr (R(ga)R(gb)R(gc)) ∈ F,

where fabc are the structure constants of g with respect to the basis {ga}.

Example 2.9. T
( )

= tr I = dimR.

The Lie algebra g acts on the spaces g, g∗, R, R∗, and therefore also on their various tensor
products. As f , t−1, and r are invariant tensors and the contraction operation is invariant,
we see that:

Proposition 2.10. The tensors T (D) are invariant under the above mentioned g-action.

The tensors T (D) are not necessarily all different. Let Da (a for ‘all’) denote the collection
of all diagrams made of the above mentioned components, and let Aa be the vector space

Aa = span (Da) / {anti-symmetric vertices, STU and IHX relations} .

Proposition 2.11. The map T : Da → {invariant tensors} defined by D 7→ T (D) descends
to a map T : Aa → {invariant tensors}.

Proof. The Jacobi identity is the fact that a certain sum of three quadratic expressions in
the structure constants of g vanishes. Each of the diagrams making the IHX relation (4) is
such a quadratic expression, and it is easy to check that the IHX relation (in the context of
tensors produced using a Lie algebra) is just a restatement of the Jacobi identity. Similarly,
it can easily be seen that the STU relation is the fact that ‘representations represent’.
Namely, it is just a restatement of the identity R([a, b]) = R(a)R(b)−R(b)R(a) for a, b ∈ g.
Antisymmetry of internal vertices is the total antisymmetry of the tensor f . �

Proof of part (1) of theorem 4. Notice that a diagram D ∈ Dt is closed, and so T (D) is a
scalar. Let W : Dt → F denote the map D 7→ T (D). We have just proven that W descends
to a linear functional W ∈ (At)∗. Using remark 1.10 we see that we can restrict this linear
functional to GmA

c. Call the resulting functional Wg,R,m. �
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Remark 2.12. The discussion in this section has an obvious generalization to the case where
each chain or cycle of directed arcs is associated with (is colored by) a (possibly) different
representation of g. Furthermore, using linear extension cycles of directed arcs can be colored
by an arbitrary virtual representation (and the resulting extension is consistent in the obvious
sense). For what might be an even further generalization, see problem 5.4.

3. The algebra A of diagrams

In this section we will prove the theorems of section 1.5.

3.1. Proof of theorem 6. Let us start by proving that the linear map φc : Ac → At

is an isomorphism. We will do that by constructing an inverse φt : At → Ac — a map
φ̃t : Dt → Ac satisfying the STU relation and extending the natural projection Dc → Ac.
To do that, notice that the STU relation expresses a diagram with some number k of internal
vertices as a difference of diagrams with just k− 1 internal vertices. Using the STU relation
repeatedly it is clear how to construct φ̃t inductively, and the only problem is to show
consistency — that if a CCD is reduced via STU to a linear combination of chord diagrams
in two different ways, the resulting combinations are equivalent mod 4T .

If D ∈ Dt has only one internal vertex, consistency is clear — it is precisely the 4T relation.
So let us assume that φ̃t has been successfully defined on diagrams with less than k internal
vertices, k > 1, and let D be a diagram with exactly k internal vertices. Suppose the STU
relation is used to express D as a difference of two diagrams with k − 1 internal vertices in
two ways — by applying it to remove the arcs i or j, each of which connects the circle to an
internal vertex. If i and j are not connected to the same internal vertex figure 8 shows why
the two ways agree.

i j

by induction - STU is used here
with one internal vertex less.

removing i

removing j

Figure 8. The consistency proof

If i and j are connected to the same internal vertex, pick a third arc l that connects
the circle to a different internal vertex (if possible), and use the transitivity of the equality
relation. There is one exceptional case9 in which such a third arc l does not exist. It is
somewhat more convenient to return to this case later, after the proof of lemma 3.1, on
page 17.

9Of which I was informed by G. Masbaum after a preliminary version of this paper was circulated.
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It remains to show that the STU relation implies the antisymmetry of internal vertices
and the IHX identity. For the latter, by repeatedly using STU (if necessary), we can assume
that the figures I, H , and X that we are dealing with touch the circle in one of their corners,
say the lower left corner. The proof is now similar to the proof that the commutator in an
associative algebra satisfies the Jacobi identity, and is summarized in figure 9.

0

Figure 9. IHX follows from STU

Similarly, the antisymmetry of internal vertices follows from:

0. �

3.2. Proof of theorem 7. For the purpose of this proof, it is convenient to ‘linearize’
diagrams:

. (7)

More precisely, define Dl to be the collection of all ‘linear’ diagrams — these are the same
as Chinese character diagrams only with the circle replaced by a directed line. Then define
Al to be

span
(
Dl
)
/ span {all STU relations} . (8)

Clearly there is a map φl : Al → A defined by ‘closing the line into a circle’ as in (7).

Lemma 3.1. The map φl is an isomorphism.

Proof. The surjectivity of φl is trivial, and all that is required is to prove its injectivity
— that two ‘linear’ diagrams that map to the same ‘circular’ diagram are in fact equal as
members of Al:

d

?
= 0. (9)

This is easily accomplished. Disconnect the vertex marked by the letter d in (9). Add three
little ‘right turning hooks’ near each of the remaining vertices. Then put a (−) sign near
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each of the hooks that is connected to a directed arc leaving the vertex. What you get looks
like this:

2

3

1

----

f

(10)

Consider the signed sum Σ of all possible ways of connecting the ‘floating end’ (marked
by the letter f) to one of the 15 (in this case) hooks, taking hooks marked with a (−) with a
negative sign. There are two ways to group the 15 terms in this sum, and comparing these
two ways will prove our lemma.

(1) By arcs: our sign convention and the antisymmetry of internal vertices show that
when the terms in Σ are grouped by arcs, all drops out (see figure 10) except for the
terms corresponding to the three ‘groupless’ hooks. These are marked by 1, 2, and
3 in (10). The first two of these three terms form exactly the left hand side of (9),
while the third vanishes because of the antisymmetry of internal vertices.

0

0
f

f

-

Figure 10. Grouping by arcs

(2) By vertices: our sign convention, the antisymmetry of internal vertices, and the STU
and IHX relations show that when the terms in Σ are grouped by vertices, all drops
out (see figure 11). �

0

0

f STU

-

IHX
f

Figure 11. Grouping by vertices

Remark 3.2. From the knot theory view point, lemma 3.1 is just the fact that the theory
of knots with a distinguished point is equivalent to the standard theory of knots. In [10],
Birman and Lin have used this view point to prove a special case of lemma 3.1.

Conclusion of the proof of theorem 6: The one exceptional case alluded to in the
proof of theorem 6 is when the arcs i and j are connected to the same internal vertex and
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there are no other arcs connecting an internal vertex to the circle. In that case, D must look
as follows:

D =
i j

B

(
no trivalent vertices other than inside the
blob B, and the one connecting i and j.

)

.

Fortunately, no matter how STU is used to reduce D to chord diagrams, the answer is 0
mod 4T . Indeed, applying STU around (say) i and then collapsing B into chord diagrams
using STU relations, we get

D =

n

B − B

n

=
n

f
B’

−

B’
n f

= DT −DU .

But DT and DU are equal — to get from DT to DU one has to pass the end f of the chord
marked n over the chords in the blob B′. This is possible (modulo the 4T relation) by an
argument parallel to the argument in the proof of lemma 3.1. The only differences are that
hooks are put only on the circle, and that instead of summing STU and IHX relations over
vertices, one sums 4T relations over dashed arcs. �

Definition 3.3. The product · : Dl ⊗Dl → Dl is the operation of connected sum,

. .

Proposition 3.4. The above defined product · descends to a product · : A⊗A → A. With
this product, A is an associative and commutative algebra. The empty circle is a unit in
A.

Proof. Remembering that A ≃ Al, the only problem that remains is to show the commuta-
tivity of the product as an operation Al ⊗Al → Al. But clearly for D1,2 ∈ D

l, D1 ·D2 and
D2 ·D1 correspond to the same diagram in Dt under the isomorphism φl. �

Remark 3.5. As an operation on Dt, the product is also given as connected sum,

. ,

It is not well defined as an operation Dt ⊗ Dt → Dt. As such, it depends on the points
on circles used for the surgery involved in the connected sum. However, as an operation
Dt ⊗Dt → A it is well defined, as follows from the equivalence of Al and At.

Exercise 3.6. Check that the product of A corresponds in a natural way to the connected
sum operation on knots.

Definition 3.7. Let D be the vector space generated by the elements ofDt. Define a splitting
Ds of a diagram D ∈ Dt to be a marking of the dashed arcs in D by the letters l and r, so
that if three dashed arcs of D meet at some vertex, then they are all marked by the same
letter. Define ∆ : Dt → D ⊗D by

∆(D) =
∑

all splittings
Ds of D

L(Ds)⊗ R(Ds),
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where L(Ds) (R(Ds)) is obtained from D by removing all the arcs marked by r (l) in Ds.
See figure 12.

;;;

l l r r
l

l l
r

l
l

l

r
r

r

r
r

Figure 12. Computing ∆
( )

.

Proposition 3.8. ∆ descends to a co-commutative co-associative co-product on A. The
linear functional ǫ ∈ A∗ defined by ǫ

( )
= 1; ǫ|

GmA
= 0, (m > 0) is a co-unit in the

resulting co-algebra.

Proof. An explicit computation shows that

∆
(
− +

)
=
(
− +

)
⊗
( )

+
( )

⊗
(
− +

)
.

This implies that ∆ is well defined as a map ∆ : A → A ⊗ A. The other assertions of the
proposition are trivial. �

Proposition 3.9. With the operations defined above, A is a Hopf algebra.

Proof. Let D1,2 ∈ D
t. The compatibility ∆(D1D2) = ∆(D1)∆(D2) of the product and the

co-product is just the statement
∑

all splittings
(D1D2)s of D1D2

L((D1D2)s)⊗R((D1D2)s) =
∑

all splittings
D1s of D1
D2s of D2

L(D1s)L(D2s)⊗ R(D1s)R(D2s),

which is rather clear. �

Exercise 3.10. Show that the co-product of A corresponds to the multiplication of knot
invariants. In other words, let V1 (V2) be a Vassiliev invariant of type m1 (m2). Show that
V1 · V2 is a Vassiliev invariant of type m1 +m2 and that

Wm1+m2(V1 · V2) = (Wm1(V1)⊗Wm2(V2)) ◦∆.

Definition 3.11. Let D ∈ Dt be a diagram with exactly n internal trivalent vertices, and
let q ∈ Z be a non-zero integer. Define ψq(D) ∈ D to be the sum of all possible ways of
lifting D to the qth cover of the circle. For example,

ψ2
( )

=

(

+ + . . .

)

= + + . . . = 12 + 4 .

For q = 0, just define

ψ0(D) =

{

if D = ,

0 otherwise.

Exercise 3.12. Show that ψq descends to a co-algebra automorphism of A and that for any
q, p ∈ Z, ψq ◦ ψp = ψqp.
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Notice that propositions 3.4, 3.8, 3.9 and exercise 3.12 prove theorem 7.

Definition 3.13. Let K : (S1 = {z : |z| = 1}) → R3 be a framed knot and let n(z)
(z ∈ S1) be a section of the normal bundle of K compatible with its framing. Notice that
the normal bundle of K has a natural complex structure. For a non-zero integer q define the
qth connected cabling ψq(K) of K to be the knot given by

ψq(K)(z) = K(zq) + ǫzn(zq),

where ǫ is a very small number. Let ψq(K) inherit the framing of K.

Exercise 3.14. Show that the operations ψq on knots and on diagrams correspond. In other
words, show that if V is a Vassiliev invariant of type m of framed knots then V ◦ ψq is also
a Vassiliev invariant of type m, and that Wm(V ◦ ψq) = Wm(V ) ◦ ψq.

3.2.1. Proof of part (1) of theorem 9.

Exercise 3.15. Prove that W is a sub-Hopf-algebra of A∗ and that P(W) = P(A∗) ∩W.

The exercise implies that to prove part (1) of theorem 9 it is enough to show that

P(A∗) ∩W = P ′(A∗).

A functional W ∈ A∗ is primitive iff ∆(W ) = ǫ ⊗ W + W ⊗ ǫ iff for all D1 and D2,
W (D1 ·D2) = ǫ(D1)W (D2)+W (D1)ǫ(D2). The last condition means that W is primitive iff
it vanishes on reducible diagrams (those diagrams which are a product in a non-trivial way).
Now if W ∈ P ′(A∗) then W is primitive and degW > 1. This implies that W vanishes on
diagrams having an isolated chord. On the other hand, if W ∈ P(A∗)∩W, then it vanishes
on and therefore it is of degree higher than 1. �

3.2.2. Proof of part (2) of theorem 4. All that that remains to be shown is that there exists
a canonical projection

(W → Ŵ ) : (A∗ = S(P(A∗)))→ (W = S(P ′(A∗))) .

Such a projection is induced from the natural projection P(A∗) → P ′(A∗) that maps the
primitive of degree 1 to 0 and acts as the identity otherwise. �

Exercise 3.16. Define a map φ : A⊗A → A by

φ(D1 ⊗D2) =







(

−
)degD1

·D2 if D1 is chord diagram,

0 if D1 has internal trivalent vertices,

and show that Ŵ (D) = W (φ(∆D)).10

10I wish to thank S. Willerton for noticing an inaccuracy in my original formulation of this exercise and
for supplying this much cleaner version.
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4. Kontsevich’s Knizhnik-Zamolodchikov construction

In this section we will mostly be concerned with proving the hard part of theorem 1 —
with defining the map V . Recall that the ‘mth derivatives’ of a Vassiliev invariant of type
m is a system of ‘constants’, and that we called such systems of constants weight systems.
The aim now is to show that every weight system can be ‘integrated’ m times to give a
Vassiliev invariant. An incomplete proof of that fact first appeared in Bar-Natan [6], where
it was shown that the combinatorics underlying perturbative Chern-Simons theory is essen-
tially that of weight systems, and that on a naive level, ignoring questions of convergence,
perturbative Chern-Simons theory can be used to integrate a weight system to a Vassiliev
invariant. The analytical difficulties in [6] were later resolved by Axelrod and Singer [3]
and by Kontsevich [26]. Later on, Kontsevich found a second proof based on the Knizhnik-
Zamolodchikov equation [23], in which convergence is much easier to show. This is the proof
that we will present here.

4.1. Connections, curvature, and holonomy. Up to some (important) subtlety, a con-
nection is a 1-form whose values are in the algebra of endomorphisms of the fiber. One would
like to know how much of the theory of connections can be generalized to the case of 1-forms
with values in an arbitrary associative algebra. As was shown by K-T. Chen [12], much of
the theory persists in the more general case. Let us briefly review some aspects of Chen’s
theory.

Let X be a smooth manifold and let A be a topological algebra over the real numbers R
(or the complex numbers C), with a unit 1. An A-valued connection Ω on X is an A-valued
1-form Ω on X. Its curvature FΩ is the A-valued 2-form FΩ = dΩ + Ω ∧ Ω, where the
definitions of the exterior differentiation operator d and of the wedge product ∧ are precisely
the same as the corresponding definitions in the case of matrix valued forms. The notion
of “parallel transport” also has a generalization in the new context: Let B : I → X be a
smooth map from some interval I = [a, b] to X. Define the holonomy hB,Ω of Ω along B to
be the function hB,Ω : I → A which satisfies

hB,Ω(a) = 1;
∂

∂t
hB,Ω(t) = Ω

(

Ḃ(t)
)

hB,Ω(t), (t ∈ I)

if such a function exists and is unique. In many interesting cases, hB,Ω exists and is given
(see e.g. [12]) by the following “iterated integral” formula:

hB,Ω(t) = 1 +
∞∑

m=1

∫

a≤t1≤...≤tm≤t

(B∗Ω)(tm) · . . . · (B∗Ω)(t1). (11)

(In this formula B∗Ω denotes the pullback of Ω to I via B). Furthermore, just like in
the standard theory of connections, if FΩ ≡ 0 (‘Ω is flat’), then hB,Ω is invariant under
homotopies of B that preserve its endpoints.

In the case of interest for us, A will be the completion of a graded algebra of finite type over
the complex numbers — the direct product of the finite dimensional (over C) homogeneous
components of a graded algebra. The connection Ω will be homogeneous of degree 1. In
this case the mth term hm,B,Ω in (11) is homogeneous of degree m, and there is no problem
with the convergence of the sum there. Also, as each term lives in a different degree, Chen’s
theory implies that each term is invariant under homotopies of B that preserve its endpoints.
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These assertions are not very hard to verify directly from the definition of hm,B,Ω as a multiple
integral.

4.2. The formal Knizhnik-Zamolodchikov connection. LetDKZn be the collection of all
diagrams made of n ordered upward pointing arrows, and dashed arcs and oriented vertices
as in the definition of At, with the standard conventions about higher than trivalent vertices
and about the orientation of vertices:

DKZn =





︸ ︷︷ ︸

n ordered upward pointing arrows







.

Let the ground field be C and let AKZn be the quotient

AKZn = span(DKZn ) /{STU relations} .

AKZn is an algebra with ‘composition’ as its product:

, (n = 3).

AKZn is graded by half the number of vertices in a diagram, excluding the 2n endpoints of
the n arrows; the degree of the above product is 4.

For 1 ≤ i < j ≤ n define Ωij ∈ A
KZ
n by

Ωij =
ji

.

Let Xn be the configuration space of n distinct points in C; Xn = {(z1, . . . , zn) ∈ Cn : zi =
zj ⇒ i = j}, and let ωij be the complex 1-form on Xn defined by

ωij = d(log zi − zj) =
dzi − dzj
zi − zj

.

The formal Knizhnik-Zamolodchikov connection is the AKZn -valued connection

Ωn =
∑

1≤i<j≤n

Ωijωij

on Xn.

Proposition 4.1. The formal Knizhnik-Zamolodchikov connection Ωn is flat.

Proof. Clearly dΩn = 0. Let us check that

Ωn ∧ Ωn =
∑

i<j;i′<j′

ΩijΩi′j′ωij ∧ ωi′j′ = 0. (12)

The above sum can be separated into three parts, according to the cardinality of the set
{i, j, i′, j′}. If this cardinality is 2 or 4 then Ωij and Ωi′j′ commute, while ωij and ωi′j′ anti-
commute. It is easy to check that this implies that the corresponding parts of the sum (12)
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vanish. The only interesting case is when |{i, j, i′, j′}| = 3, say {i, j, i′, j′} = {1, 2, 3}. In this
case,

∑

{i,j,i′,j′}={1,2,3}

ΩijΩi′j′ωij ∧ ωi′j′ = (Ω12Ω23 − Ω23Ω12)ω12 ∧ ω23 + (cyclic permutations).

By the STU relation this is

= Ω123(ω12 ∧ ω23 + (cyclic permutations)) = 0, (13)

where Ω123 is given by

Ω123 = ∈ AKZn .

The vanishing of ω12 ∧ ω23 + (cyclic permutations) is called ‘Arnold’s identity’ [1] and can
be easily verified by a direct computation. �

Remark 4.2. The connection Ωn has a simple generalization to the case when the underlying
algebra is AKZn,n , the algebra generated by diagrams having 2n arrows, whose first n arrows
point upward and whose next n arrows point downward. The only difference is a sign
difference in the application of the STU relation in (13). Therefore if one defines

Ωn,n =
∑

1≤i≤j≤2n

sisjΩijωij,

where si =

{

+1 i ≤ n

−1 i > n
, then the connection Ωn,n is flat.

4.3. Kontsevich’s integral invariants. Choose a decomposition R3 = Cz ×Rt of R3 to
a product of a complex plane Cz parametrized by z and a real line Rt parametrized by t
and let K : S1 → R3 be a parametrized knot on which the function t is a Morse function.
Consider the following series, whose precise definition will be discussed below:

Z(K) =

∞∑

m=0

1

(2πi)m

∫

tmin<t1<...<tm<tmax

∑

applicable pairings
P={(zi,z

′
i)}

(−1)#P↓DP

m∧

i=1

dzi − dz
′
i

zi − z′i
∈ Ar

C
.
(14)

In the above equation,

• tmin (tmax) is the minimal (maximal) value of t on K.
• an ‘applicable pairing’ is a choice of an unordered pair (zi, z

′
i) for every 1 ≤ i ≤ m,

for which (zi, ti) and (z′i, ti) are distinct points on K.
• #P↓ is the number of points of the form (zi, ti) or (z′i, ti) at which K is decreasing.

Remember that in this article we are only considering oriented knots.
• Ar

C
is the quotient of AC by the ideal generated by the diagram . In other words,

diagrams having an isolated chord (in the sense of definition 1.6) are set equal to 0 in
Ar

C
. The subscripts C are intended to remind us that the construction is done over

the ground field C. There is a similar definition for Ar
R
.

• DP is the chord diagram naturally associated with K and P as in figure 13. It is to
be regarded as an element of the quotient Ar

C
.
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• Every pairing defines a map {ti} 7→ {(zi, z
′
i)} locally around the current values of the

ti’s. Use this map to pull the dzi’s and dz′i’s to the m-simplex tmin < t1 < . . . < tm <
tmax and then integrate the indicated wedge product over that simplex.

1
2

3

4

zz
z’

t

t4

t3
t2

t1

2
2

Figure 13. m = 4: a knot K with a pairing P and the corresponding chord diagram DP .

Notice that DP = 0 in Ar
C

due to the isolated chord marked by 1.

4.3.1. Finiteness. Properly interpreted, the integrals in (14) are finite. There appears to be
a problem in the denominator when zi− z

′
i is small for some i. This can happen in either of

two ways:

(1) z z’i i

z i+1 in this case the integration domain for zi+1 is as small as zi−z
′
i, and

its ‘smallness’ cancels the singularity coming from the denominator.

(2) z z’i i
in this case the corresponding diagram DP has an isolated chord,
and so it is 0 in Ar

C
.

4.3.2. Invariance under horizontal deformations. For times tmin ≤ a < b ≤ tmax define
Z(K, [a, b]) in exactly the same way as (14), only restricting the domain of integration to be
a < t1 < . . . < tm < b. Of course, Z(K, [a, b]) will not be in Ar

C
, but rather in the vector

space

A
K,[a,b]
C

= span

{
diagrams whose solid lines
are as in the part of K on
which a ≤ t ≤ b

}/

span







STU relations and di-
agrams with subdia-
grams like






.

For example, if t1, t4, and K are as in figure 13, then the following is a diagram in A
K,[t1,t4]
C

:

4

1

t

t

.

The same reasoning as in section 4.3.1 shows that Z(K, [a, b]) is finite. For tmin ≤ a < b <

c ≤ tmax, there is an obvious product A
K,[a,b]
C

⊗A
K,[b,c]
C

→ A
K,[a,c]
C

, and it is easy to show that
with this product Z(K, [a, b])Z(K, [b, c]) = Z(K, [a, c]).
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Let tmin < a < b < tmax be times for which K has no critical points in the time slice
a ≤ t ≤ b, and let n be the number of upward (or downward) pointing strands of K in that

slice. Then A
K,[a,b]
C

≡ AKZn,n , and comparing with (11) and the definition of Ωn,n we see that
Z(K, [a, b]) is the holonomy of Ωn,n along the braid defined by the intersection of K with the
slice a ≤ t ≤ b. The flatness of Ωn,n implies that this holonomy is invariant under horizontal
deformations of that piece of K, and together with

Z(K) = Z(K, [tmin, tmax]) = Z(K, [tmin, a])Z(K, [a, b])Z(K, [b, tmax])

we see that Z(K) is invariant under horizontal deformations of K which ‘freeze’ the time
slices in which K has a critical point.

4.3.3. Moving critical points. In this section we will show that (subject to some restrictions)
Z(K) is also invariant under deformations of K that do move critical points. The idea is to
narrow critical points to sharp needles using horizontal deformations, and then show that
very sharp needles contribute almost nothing to Z(K) and therefore can be moved around
(almost) freely:

. (15)

Lemma 4.3. If the two knots K1,2 both contain a sharp needle of width ǫ, and are the
identical except possibly for the length and the directions of their respective needles, then

||Zm(K1)− Zm(K2)|| ∼ ǫ

where Zm is the degree m piece of Z and || · || is some fixed norm on GmA
r
C
.

Proof. Clearly, the difference between Zm(K1) and Zm(K2) will come only from terms in (14)
in which one of the zi’s (or z′i’s) is on the needle. So let us show that if a knot K contains
a needle N of width ǫ, then such terms in Zm(K) are at most proportional to ǫ. Without
loss of generality we can assume that the needle N points upward. If the highest pair (zi, z

′
i)

that touches N connects the two sides of N , the corresponding diagram is 0 in Ar
C

and there
is nothing to worry about. If there is no pair (zj , z

′
j) that connects the two sides of N then

again life is simple: in that case there are no singularities in (14) so nothing big prevents

from being small. (Notice that these two terms appear in Z(K) with opposite signs due to
the factor (−1)#P↓ but otherwise they differ only by something proportional to ǫ). If (zj , z

′
j)

is a pair that does connect the two sides of N , it has to do so in the top (round) part of N
— otherwise dzj − dz

′
j = 0.
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So the only terms that cause some worry are those that have some k > 1 pairs (zj1 , z
′
j1

)
through (zjk , z

′
jk

) on the top part of N , with (zjk , z
′
jk

) being the highest of these pairs and
(zj1 , z

′
j1

) the lowest. We might as well assume that there are no pairs other than (zi, z
′
i)

that touch N only once — such pairs just shorten the domain of integration in (14) without
adding any singularity in the denominator. So what we have looks like:

i

1

kj...
j

ε

. (16)

Writing δα = |zjα − z′jα |, we see that the integral corresponding to (16) is bounded by a
constant times

∫ ǫ

0

dδ1
δ1

∫ δ1

0

dδ2
δ2
· · ·

∫ δk−1

0

dδk
δk

∫ z′jk

zjk

dzi − dz
′
i

zi − z′i
∼ ǫ. �

Unfortunately, there is one type of deformation that (15) and lemma 4.3 cannot handle
— the total number of critical points in K cannot be changed:

. (17)

Even if the hump on the left figure is deformed into a needle and then this needle is removed,
a (smaller) hump still remains.

4.3.4. The correction. Let the symbol ∞ stand for the embedding

.

Notice that

Z(∞) = + (higher order terms) (18)

and so using power series Z(∞) can be inverted and the following definition makes sense:

Definition 4.4. Let K be a knot embedded in C×R with c critical points. Notice that c
is always even and set11

Z̃(K) =
Z(K)

(Z(∞))
c
2
−1
.

Theorem 13. Z̃(K) is invariant under arbitrary deformations of the knot K.

11The non-invariance of Z(K) under the move (17) was first noticed by R. Bott and the author. The

correction Z̃(K) is due to Kontsevich [25].
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Proof. Clearly, Z̃(K) is invariant under deformations that do not change the number of
critical points of K, and the only thing that remains to be checked is its invariance under
the move (17). So let Kc and Ks be two knots that are identical other then that in some
place Kc has the figure in the left side of (17) while in the same place Ks has the figure on
the right side of (17). We need to show that in Ar

C
,

Z(Kc) = Z(∞)Z(Ks).

Using deformations as in section 4.3.3 we can move the ‘humps’ of Kc to be very far from the
rest of the knot, and shrink them to be very small. This done, we can ignore contributions to
Z(Kc) coming from pairings in which any of the pairs connect the humps to the rest of the
knot. Hence Z(Kc) factors to a part which is the same as in Z(Ks) times contributions that
come from pairings that pair the ‘humpy’ part of Kc to itself. But as the following figure
shows, for the same reasons as in section 4.3.3, these contributions are precisely Z(∞):

�

Exercise 4.5. Show that Z̃(K) is in fact real: Z̃(K) ∈ Ar
R

.

Hint 4.6. Use the fact that the transformation t→ −t, z → z̄ maps a knot to an equivalent
knot, while mapping Ωn,n to minus its conjugate.

Remark 4.7. Kontsevich [25], building on some work of Drinfel’d ([16] and [17]), has proven

that Z̃(K) has rational coefficients.

4.4. Proof of theorem 1.

4.4.1. Proof of part (2) of theorem 1. A weight system W of degree m is just a linear
functional on GmA

r
R

. Extend it by zero to all of Ar
R

, and define

V (W )(K) = W (Z̃(K)). �

4.4.2. Proof of part (3) of theorem 1. Let W be a degree m weight system. To show that
W = Wm(V (W )) it is enough to show that if D ∈ GmD

c is a chord diagram of degree m and

if KD is an embedding of D in the sense of section 2.2, then (for the natural extension of Z̃
to knots with double points, definition 1.2):

Z̃(KD) = D̄ + (terms of degree > m),

where D̄ is the class of D in Ar
R

. In view of (18), it is enough to prove the same for Z rather

than for Z̃. If two knots Ko and Ku are identical except that two of their strands form
an overcrossing in Ko and an undercrossing in Ku, it is clear that the only contributions
to Z(Ko) − Z(Ku) come from pairings in which these two strands are paired. Z(KD) is a
signed sum of Z evaluated on 2m knots, and this sum can be partitioned in pairs like the
above Ko,u around m different crossings — and thus contributions to Z(KD) come only from
pairings that pair the strands near any of the m double points of KD. This implies that
the lowest degree contribution to Z(KD) is at least of degree m. In degree m the pairing
P is determined by the above restriction. It is easy to see that in that case DP = D, and
therefore the piece of degree precisely m in Z(KD) is proportional to D̄. It remains to
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determine the constant of proportionality. This is a simple computation — in degree 1, the
difference between Z(Ko) and Z(Ku) comes from the difference between integrating

dz − dz′

z − z′

along a contour in which z passes near but above z′ and along a contour in which z passes
near but under z′. By Cauchy’s theorem this is 2πi. Repeating this m times for each of the
m double points of KD, we get (2πi)m and this exactly cancels the (2πi)m in the denominator
of (14). This proves that W = Wm(V (W )).

Next, let V be a Vassiliev invariant of type m. By the above discussion,

Wm(V − V (Wm(V ))) = Wm(V )−Wm(V (Wm(V ))) = Wm(V )−Wm(V ) = 0.

In other words, V and V (Wm(V )) differ by an invariant whose mth derivative vanishes.
Namely, by an invariant of type m− 1. �

Remark 4.8. The argument in section 4.4.2 together with Kohno’s theorem [24] immediately
imply theorem 5, as was observed by Piunikhin [33].

Problem 4.9. Is Kontsevich’s construction the same as the Reshetikhin-Turaev construc-
tion? In other words, consider the diagram:

{g, R,m}
theorem 4ւ ց theorem 5

W ←−−−−−−−−−−−−→
theorem 1

V
. (19)

Theorem 5 says that the two ways of getting from a triple {g, R,m} to W are the same.
Is it also true that the two ways of getting from such a triple to V are the same? Notice
that in the Reshetikhin-Turaev construction g-invariance is broken by a choice of a Car-
tan sub-algebra (and then the result is shown not to depend on that choice), whereas in
Kontsevich’s construction (definition 4.4) g-invariance is never broken. This means that if
the two constructions do agree, then Kontsevich’s is perhaps somewhat “better”. Warning:
Low order computations show that for diagram (19) to commute, Z̃ should be redefined to
be Z(K)/Z(∞)c/2. This does not change the conclusions of theorems 13 and 1, but does
invalidate theorem 9. It appears that [16, 17] imply a positive answer to this problem, but
the details of such an argument are yet to be carefully checked.

Problem 4.10. Is Kontsevich’s construction the same as the Chern-Simons construction
alluded to in the beginning of section 4?

Problem 4.11. The statement of theorem 1 is purely combinatorial, and one would expect
that the proof would also be combinatorial. I see the analytical proof given here as a
temporary argument until a combinatorial proof will be found. See also problem 7.3.

5. The primitive elements of A

5.1. Theorem 8 from the perspective of Lie algebras. One of the versions of the
Poincare-Birkhoff-Witt (PBW) theorem (see e.g. [15, sec. 2.4.10]) says that the universal
enveloping algebra U(g) of a Lie algebra g is canonically isomorphic to the symmetric algebra
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S(g) on g. The Lie algebra g acts on the two spaces in a compatible way, and therefore the
g-invariant pieces of these two spaces are isomorphic:

U(g)g ≃ S(g)g. (20)

The next exercise shows that in some sense the space A corresponds to U(g)g and the space
B corresponds to S(g)g. In the light of (20) it is therefore not too surprising to find that
A ≃ B.

Exercise 5.1. Given a Lie algebra g and a metric t construct natural maps TA : Al → U(g)g

and TB : B → S(g)g. Notice that these maps do not preserve the natural gradings of the
spaces involved.

Hint 5.2. For TA carry out the same procedure as in section 2.2, ignoring those parts of the
procedure that mention the representation R. Given D ∈ Dl get a tensor in some tensor
power of g, and use the product of U(g) to land in U(g)g. The map TB is even easier, only
that there is no natural ordering for the external vertices of a diagram C ∈ C.

Problem 5.3. The maps TA and TB are not isomorphisms (see e.g. (30)), but I do not know
how far they are from being isomorphisms.

Problem 5.4. Exercise 5.1 shows that to get a linear functional on Al it is sufficient to
choose a linear functional on the center of U(g) for some Lie algebra g that has an invariant
metric. If g is semi-simple, it is well known that the space of such linear functionals is
spanned by traces in finite dimensional representations and thus linear functionals on U(g)g

give the same T ’s as in section 2.4. I do not know if this is still true if g is not semi-simple.

The proof of theorem 8 is more or less a direct translation of the proof of the above version
of the PBW theorem to our language. It is instructive to read the following proof keeping
Lie algebras in mind and noticing that TA and TB carry the isomorphism that we construct
to the standard isomorphism (20).

5.2. Proof of theorem 8. We will construct a map χ̄ : B → A and a map σ̄ : A → B,
and then show that they are each other’s inverse. For a Chinese character C ∈ C that has k
external vertices, define χ(C) to be the sum of the k! ways of enclosing C in a circle. Each
of these k! ways is obtained by choosing a bijection between the external vertices of C and
the collection of kth roots of unity {z : zk = 1}, and then gluing each external vertex of C
to the corresponding point on the unit circle. For example,

χ(  
 ) = 2 , χ

( )
= 16 + 8 , χ

( )

= 3 + 3 = 0.

Theorem 6 implies that χ descends to a map χ̄ : B → A.
The idea of the proof is to try to invert χ̄. The image of χ̄ are the symmetric linear

combinations of diagrams — those combinations that are stable under permuting external
vertices. So given any diagram we will try to show that it is equivalent (modulo STU
relations) to a symmetric combination. The obvious way to do that is to symmetrize — to
compare each diagram with the sum of all of its ‘permuted versions’. We will show that
the difference between a diagram and a permuted version of it is equivalent (mod STU) to
a sum of diagrams with a lower number of external vertices (but this sum is not uniquely
determined), and so we can ‘push the problems down’ and prove by induction. The most
central of the technical details that have to be checked is the uniqueness of the procedure
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outlined above. This is where the properties defining B, the IHX relation and anti-symmetry
of internal vertices, are used.

To define the map σ̄ we first need to filter D and C. Let

Dk = span {D ∈ Dl : D has at most k external vertices},

Ck = span {C ∈ C : C has at most k external vertices}.

Let Ik be the ideal in D generated by all STU , IHX, and AS relations that do not involve
diagrams with more than k external vertices (so that A = D/I∞).

We will inductively construct a sequence of compatible maps σk : Dk → B satisfying:

(Σ1) σk ◦ χk = PCk
where χk is the restriction of χ to Ck and PCk

is the projection map
Ck → B.

(Σ2) σk(the anti-symmetry relation) = 0. In other words, if the two diagrams D± ∈ Dk
differ only by the orientation of one of their vertices, then σk(D+ +D−) = 0.

(Σ3) σk(IHX) = 0. In other words, if the diagrams I,H,X ∈ Dk are related as in theorem
6 then σk(I −H +X) = 0.

(Σ4) σk(Ik) = 0. (And thus σk descends to a map σ̄k : Dk/Ik → B).
(Σ5) χ̄ ◦ σ̄k is the identity transformation of the quotient of Dk by Ik, AS and IHX.

At any fixed degree, when k is large enough χ̄k becomes χ̄ and σ̄k becomes σ̄, so Σ1 and
Σ5 would imply that χ̄ and σ̄ are inverses of each other, as required.

For k = 0 there is a single diagram in D0 (that is, ) and single diagram in C0 — the

empty diagram E. So define σ0

( )
= E. A diagram D ∈ D1 has exactly one vertex on its

circle. Define σ(D) to be D with its circle removed and then Σ1-Σ3 is trivial. I1 is empty
and so for Σ4 there is nothing to prove and Σ5 is trivial. Let us assume for some k > 1 a
map σk−1 satisfying Σ1-Σ5 was constructed.

The permutation group Sk acts on diagrams in Dl having precisely k external vertices
by permuting those external vertices. This operations has a nice graphic representation as
‘composition’:

k = 5; π = ; D = ;

πD = . (21)

Lemma 5.5. Regarded as an element of Dk/Ik, D − πD is an the image of β : Dk−1 →
Dk → Dk/Ik. Any choice U of a presentation of π as a product of transpositions determines
in a natural way an element ΓD(U) ∈ Dk−1 for which β(ΓD(U)) = D− πD. Furthermore, if

U and Ū are two such presentations, then ΛD(U) = ΛD(Ū), where ΛD
def
= σk−1 ◦ ΓD.

Proof. For 1 ≤ i < k let Ui = (i, i+ 1) be the transposition that interchanges i and i+ 1,

Ui =

i+1i

...... ,

let T denote the identity
(

...

)

in Sk, and let Si be the graph

Si =

i+1i

...... .
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Regard Si as an operator Si : Dk → Dk−1 by composition (as in (21)),

k = 5; S3 = ; D = ;

S3D = .

The STU relation is just the fact that in Dk/Ik,

SiD = TD − UiD, 1 ≤ i < k (22)

Let U denote a presentation π = Ui1 · . . . · Uiµ of π as a product of transpositions. Set

ΓD(U) =

µ
∑

ν=1

SiνUiν+1 · . . . · UiµD ∈ Dk−1. (23)

Using (22) on β(ΓD(U)) we get a telescopic series whose sum is D − πD.
What we have constructed above is, in fact, a map ΓD : U 7→ ΓD(U) from the free monoid

M on k−1 letters {U1, . . . , Uk−1} (with T denoting its identity) to Dk−1. Dk−1 is an Abelian
group and so this map has an extension to a linear map ΓD : R(M) → Dk−1 defined on
the monoid-ring R(M) of M. To conclude the proof of the lemma we need to show that
ΛD vanishes on the kernel K of the natural map R(M) → R(Sk). The kernel K is the
double-sided ideal of R(M) generated by

{
U2
i − T

}
∪ {UiUj − UjUi : |i− j| > 1} ∪ {UiUi−1Ui − Ui−1UiUi−1 : 1 < i < k} .

Let us first show that ΛD vanishes on these generators.
Generators of the form U2

i − T :

ΛD(U2
i − T ) = σk−1(SiUiD + SiD) = σk−1






... ...

......

... ...

......

......




=0

by the anti-symmetry of the vertex (Σ2).
Generators of the form UiUj − UjUi, |i− j| > 1:

ΛD(UiUj − UjUi) = σk−1(SjD − SjUiD + SiUjD − SiD)

= σk−1





...... ...

... ... ...

... ... ...

...... ...

... ... ...

...... ...

.........
... ... ...

... ... ...

...... ...





by the STU relation (Σ4) this is

= σk−1

(

...... ...

......... ... ... ...

...... ...

)

= 0.

Generators of the form UiUi−1Ui − Ui−1UiUi−1:

ΛD(UiUi−1Ui − Ui−1UiUi−1) = σk−1





+SiD −Si−1UiUi−1D
+SiUi−1UiD −Si−1D
+Si−1UiD −SiUi−1D
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= σk−1


















... ...

... .........

......

......

......... ...

... ...

... ...

... ... ......

......


















STU
= σk−1


















......

......

... ...

... ...

... ...

... ...


















IHX
= 0.

Here the IHX identity (Σ3) was used to deduce the last equality, and the STU identity
(Σ4) was used separately in each row to deduce the preceding equality.

Having shown that ΛD vanishes on the generators of K, it is rather easy to conclude that
ΛD vanishes identically on K. Notice that all the generators of K are of the form W1−W2 for
some W1,2 ∈M. Notice also that (23) implies that Λ has the following ‘cocycle property’:

ΛD(VW ) = ΛWD(V ) + ΛD(W ), (V,W ∈ M; D ∈ Dk). (24)

Therefore, if VWZ is a general element of K where W = W1 −W2 is one of the generators
considered above, then

ΛD(VW1Z − VW2Z) =(ΛW1ZD(V )− ΛW2ZD(V )) + (ΛZD(W1)− ΛZD(W2))

+ (ΛD(Z)− ΛD(Z)).
(25)

In (25) the first term vanishes because W1 −W2 ∈ K implies that W1 = W2 as permutation
in Sk and thus W1ZD = W2ZD, the middle term vanishes as was shown above and the last
term vanishes trivially. �

Let us return to the construction of σk and the proof of theorem 8. Lemma 5.5 means
that given any D ∈ Dk and π ∈ Sk we can set ΛD(π) = σk−1(ΓD(Uπ)) where Uπ is any
presentation of π. Given any diagram D ∈ Dk let DCC be the Chinese character obtained
from D by removing its directed line, and set

σk(D) =
1

k!

(

DCC +
∑

π∈Sk

ΛD(π)

)

.

For a diagram D having less than k external vertices, just set σk(D) = σk−1(D).
Proof of Σ1: Any Chinese character C ∈ Ck is of the form C = DCC for some D ∈ Dk,
and clearly χ(C) =

∑

ρ ρD. Therefore

σk(χk(C)) = σk

(
∑

ρ∈Sk

ρD

)

=
1

k!

(
∑

ρ∈Sk

(ρD)CC +
∑

ρ,π∈Sk

ΛρD(π)

)

by the cocycle property (24) this is

= DCC +
1

k!

∑

ρ,π∈Sk

(ΛD(πρ)− ΛD(ρ)) = C +
∑

λ∈Sk

ΛD(λ)−
∑

ρ∈Sk

ΛD(ρ) = C.

Proof of Σ2 and Σ3: If the two diagrams D± ∈ Dk differ only by the orientation of one
of their internal vertices, then clearly DCC

+ and DCC
− also differ only by such an orientation.
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Hence Σ2 follows from the anti-symmetry of internal vertices in B, from the fact (23) that
ΓD±

does not touch the internal vertices of D±, and from the induction hypothesis. The
proof of Σ3 is similar.
Proof of Σ4: Using the notation of (22), we need to show that σk(SiD) = σk(TD− UiD)
for a diagram D ∈ Dk:

σk(TD)− σk(UiD) =
1

k!

(

DCC − (UiD)CC +
∑

π∈Sk

(ΛD(π)− ΛUiD(π))

)

using the cocycle property (24) this is

=
1

k!

∑

π∈Sk

(ΛD(π)− ΛD(Uiπ) + ΛD(Ui)) = ΛD(Ui) = σk−1(ΓD(Ui)) = σk(SiD).

Proof of Σ5: Let D ∈ Dk be regarded as an element of Dk/Ik. Then

χ̄(σ̄k(D)) =
1

k!
χ̄

(

DCC +
∑

π∈Sk

ΛD(π)

)

=
1

k!

∑

π∈Sk

(πD + (χ̄ ◦ σ̄k−1) (ΓD(Uπ)))

using the induction hypothesis (Σ5) and then lemma 5.5 this is

=
1

k!

∑

π∈Sk

(πD + ΓD(Uπ)) =
1

k!

∑

π∈Sk

(πD +D − πD) = D.

This concludes the proof of the equivalence of A and B.
Let C =

⋃

i∈I Ci be a presentation of a diagram C ∈ C as the union of its connected
components. Define a co-product ∆C : C → C ⊗ C by

∆C(C) =
∑

J⊆I




⋃

i∈J

Ci



⊗




⋃

i∈I\J

Ci



 .

It is easy to verify that

(χ⊗ χ) ◦∆C = ∆ ◦ χ. (26)

This implies that under the equivalence of A and B, ∆C corresponds to the co-product of A.
From the definition of ∆C it is easy to check that the primitive elements of the co-algebra B
are the equivalence classes of connected diagrams in C. This concludes the proof of theorem
8. �

Remark 5.6. The statement of theorem 8 is due to M. Kontsevich [25], as well as the definition
of the map χ. The above proof is due to the author.

Remark 5.7. The product · on A does not (!) correspond to taking the union of diagrams in
C. Using disjoint union to make B an algebra, this means that the maps A ↔ B are vector
space isomorphisms but not algebra isomorphisms. Pulling back to A the product of B, we
see that A is an algebra in two different ways, both compatible with its co-product.

Exercise 5.8. Show that in the case of Lie algebras, the proof of theorem 8 can be changed
in a minor way to yield a proof of the full PBW theorem

U(g) ≃ S(g)
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The idea is to allow an additional type of univalent vertices in Al and B, marked by elements
of g. Then mod out by a few more relations, and repeat essentially the same argument as
above. Notice that, by a small further modification, this can be done even if the Lie algebra
g does not carry a metric.

5.3. Proof of part (2) of theorem 9.
Let K1 and K2 be knots, and let K1#K2 denote their connected sum.

DrawK1#K2 as on the right, and use the same argument as in the proof of
theorem 13 to show that Z(K1#K2) = Z(K1)Z(K2), and therefore, after
carefully counting critical points in K1#K2, Z̃(K1#K2) = Z̃(K1)Z̃(K2).
If W is a primitive weight system, it satisfies ∆(W ) = W ⊗ ǫ + ǫ ⊗W ,
and then by the definition of ∆ on A∗ we get:

2

1K

K

V (W )(K1#K2) = W (Z̃(K1#K2)) = W (Z̃(K1)Z̃(K2)) = ∆(W )(Z̃(K1)⊗ Z̃(K2))

= W (Z̃(K1))ǫ(Z̃(K2)) + ǫ(Z̃(K1))W (Z̃(K2))

= V (W )(K1) + V (W )(K2). �

6. How big are A, W and P?

6.1. Numerical results. 2, 106 lines of C++ code and about 10 days of CPU time yield
the following results for the dimensions of the various spaces involved [7]:

m 0 1 2 3 4 5 6 7 8 9
dimGmA 1 1 2 3 6 10 19 33 60 104
dimGmW 1 0 1 1 3 4 9 14 27 44
dimGmP 1 1 1 1 2 3 5 8 12 18
dimGmLie 1 1 2 3 6 10 19 33 60 104
diagrams 1 0 1 2 7 36 300 3, 218 42, 335 644, 808
relations 0 0 0 2 15 144 1, 645 21, 930 334, 908 5, 056, 798

Remark 6.1. • The space GmLie is the subspace of (GmA)∗ spanned by the Lie algebraic
weight systems of theorem 4. In fact, I have only computed the weight systems
corresponding to the classical groups and their representations, and so the above
numbers also prove conjecture 2 up to degree 9.
• The numbers in the last two rows indicate the size of the matrices that had to be row

reduced in order to compute dimGmW. These numbers have no real significance —
they somewhat depend on the details of the algorithm chosen — and are displayed
only so as to give an impression of the complexity of the problem.
• The dimensions of GmA and GmP were deduced from dimGmW using equation (5)

and theorem 9.
• I wish to thank V. I. Arnold for correcting an earlier mistake I made in computing

dimG8P.
• The problem is highly exponential and it is unlikely that it will be possible to use

the same techniques to compute dimG10A.

The last point makes it evident that a computer search is not the best way to generate
weight systems. In the next section, I will present a very general construction of weight
systems, which conceivably generates all of them.
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6.2. Marked surfaces. In this section, we will construct the map Φ : B → M, promised
in theorem 10. The easiest way to do so, is to factor it through the space Bm of equivalence
classes of marked diagrams.

Definition 6.2. A marked diagram is a Chinese character (see definition 1.11) whose arcs
are marked either by the symbol ‘=’ or by the symbol ‘×’. Sometimes we will mark an arc
with more than one symbol. In this case, it is understood that an even number of ×’s (and
an arbitrary number of =’s) on a single arc is equivalent to a single ‘=’ on that arc, while
an odd number of ×’s (and an arbitrary number of =’s) is equivalent to a single ‘×’. (See
figure 14). The collection of all marked diagrams is denoted by Cm and is graded in the same
way as C.

Figure 14. Two versions of the same degree 2 marked diagram.

Definition 6.3. Bm is the quotient of span Cm by the subspace spanned by the relations:

AS : ; IH : .

In these marked diagrams the symbol ‘◦’ stands for an arbitrary additional marking, which
is the same on corresponding arcs on both sides of the same equation.

Notice that the following two additional relations are satisfied in Bm:

HX : ASIHAS

XI : ASIH .

Definition 6.4. Let µ : C → Bm be the map defined by

)) ((( ) .

In other words, a diagram C in C having e edges is mapped to the (signed) sum of the 2e

ways of marking C.

Proposition 6.5. The map µ descends to a map µ : B → Bm.
35



Proof. Let us show that µ(I −H +X) = 0. By definition, µ(I −H +X) is

.

This sum is equal to 0 in Bm as can be seen easily from the IH , HX, and XI identities. The
marking of the external arcs of I, H , and X is also summed over, and thus the additional
×’s on some of the external arcs in the HX and the XI identities do not cause any trouble.
Notice that these additional ×’s come in pairs and therefore there is no difficulty with signs.
A similar check proves that µ(C+ − C−) = 0 if C− differs from C+ only by the orientation
of a single vertex, and together with I − H + X = 0 these are precisely the relations that
define B. �

Definition 6.6. Define the thickening map τ : Cm → M by simply thickening each of the
arcs of a diagram C ∈ Cm, with or without a twist according to whether or not it is marked
by a ‘×’, adding a counterclockwise tangent to the boundary near every external vertex (see
figure 15).

τ :

Figure 15. A marked diagram and its thickening. In this case, the resulting marked surface

is a torus with one boundary component, marked by two arrows of the same orientation.

Exercise 6.7. Show that the definition of τ does not depend on the planar projection of C.
Recall that each of the vertices of a marked diagram C is oriented. Check that τ can be
defined using this information only, and that (if the correct choices are made) the resulting
definition agrees with that of figure 15 if a diagram is planar and its vertices are oriented
counterclockwise.

Proposition 6.8. The map τ descends to a map τ : Bm →M.

Proof. Let us show that when two marked diagrams in the AS identity are thickened, the
resulting marked surfaces are isomorphic:

!? .

A similar check shows the same for the two sides of the IH identity. �

Theorem 14. The map τ is an isomorphism.

Proof. Very briefly, marked diagrams with no univalent vertices correspond to cells of max-
imal dimension in a certain triangulation (see e.g. Penner [32]) of the moduli space of
Riemann surfaces, and our theorem can be deduced from the fact that Moduli space is
connected. A direct combinatorial proof of theorem 14 will appear in Bar-Natan, [9]. �
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Definition 6.9. Define the map Φ : B →M to be the composition Φ = τ ◦ µ.

For the purpose of conjecture 2, much of the information inM is superfluous:

Exercise 6.10. For a marked surface M ∈M define a linear functional M̌ ∈M∗ by

M̌(M ′) =

{

1 M ′ ≃M,

0 otherwise.

Let M↑ and M↓ be two marked surfaces that differ only by the orientation of one of their
marks. Then the corresponding linear functionals on B differ only by a sign:

Φ∗M̌↑ + Φ∗M̌↓ = 0.

Definition 6.11. Each tangent to the boundary of a connected surface M defines an orien-
tation on the boundary component on which it lives, and if M is orientable, such a tangent
taken together with the outward pointing normal defines an orientation on M . Call a con-
nected marked surface M normalized if either of the following holds:

• M is orientable and all its markings generate the same orientation on M .
• M is non-orientable and its marking generate consistent orientations on each bound-

ary component separately.

A general marked surface is called normalized if all of its connected components are normal-
ized. It is called normalized orientable if all of its connected components are normalized and
orientable.

Remark 6.12. Exercise 6.10 shows that in order to study Φ∗M∗ it is sufficient to consider
only the linear functionals corresponding to normalized marked surfaces.

Exercise 6.13. Let M be a connected marked surface of Euler characteristic χ and genus g.
If M has b boundary components and n tangents marked on its boundary define the degree
m of M by

m = n− χ =

{

2g + b+ n− 2 if M is orientable,

g + b+ n− 2 otherwise.

Define the degree of a general marked surface to be the sum of the degrees of its connected
components, and check that with this grading onM, the map Φ preserves degrees.

Remark 6.14. The definition of the thickening map has a natural extension (also denoted by
τ) to marked diagrams which are allowed to have some p cycles of directed full lines. Simply
thicken dashed lines as before, and thicken directed lines to semi-open strips, so that every
full line l is replaced by l × [0, 1). The result is a punctured marked surface — a marked
surface with p points removed. See figure 16.

Exercise 6.15. Check that the extended map τ satisfies the STU relation and thus descends
to a map defined on the relevant quotient space.

6.3. The classical Lie algebras. The purpose of this section is to show how to compute
T (D) for an arbitrary diagram D ∈ Dt and a large number of representations of the algebras
in the families gl, su, sp, and so. I will show in detail the computations for so, and just
state the results for gl, su, and sp.
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A B C

Figure 16. Thickening full lines. A shows how to thicken dashed-full vertices, in B the

resulting surface is a punctured sphere with three holes while in C it is a punctured torus. In

all cases a dotted line represents an ‘open end’ of the surface.

6.3.1. Chord diagrams in the N dimensional representation of so(N). For a start, let us
consider only chord diagrams. Let Λ1 be the defining representation of so(N) for some N ,
and let t be given by matrix trace in that representation12,

t(a, b) = trΛ1(a)Λ1(b).

The basic building block of chord diagrams is the tensor

T αγβδ = rαbβ(t
−1)abrγaδ =

α

β

δ

γ
∈ ((Λ1)∗)⊗2 ⊗ (Λ1)⊗2,

where α and γ run over a basis of (Λ1)∗, β and δ run over a basis of Λ1, a and b run over
a basis of so(N), and rαbβ and (t−1)ab are the tensors considered in section 2.4, expressed in
coordinates.

A convenient choice of generators for so(N) are the N ×N matrices Mij (i < j), given by

(Mij)αβ = δiαδjβ − δiβδjα.

That is, the ij entry of Mij is +1, the ji entry of Mij is −1, and all other entries of Mij are
zero. The invariant bilinear form that we pick on so(N) is the matrix trace in the defining
representation, and so

t(ij)(kl)
def
= tr (MijMkl) = −2δikδjl.

Inverting the N(N−1)
2
× N(N−1)

2
matrix t(ij)(kl) we get

(t−1)(ij)(kl) = −
1

2
δikδjl, (27)

and so

T αγβδ =
∑

i<j;k<l

(t−1)(ij)(kl)(Mij)αβ(Mij)γδ. (28)

Using (27) and some algebraic manipulations we can simplify (28), and then represent it
by a diagram:

(28) =
1

2
(δαδδβγ − δαγδβδ) =

1

2

(
α

β

δ

γ
−

α

β

δ

γ

)

. (29)

The last thing to note is that T (k disjoint circles) = Nk. These rules are sufficient to
compute T (D) for any chord diagram D.

Example 6.16.

→
1

4
−

1

2
+

1

4
→

N

4
−
N

2
+
N2

4
=
N(N − 1)

4
.

12In a simple Lie algebra, an invariant metric is always a multiple of the Killing form. It is easy to check
that if t→ κt, then T (D)→ κ− deg DT (D), and so our choice of t is as good as any other choice.
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6.3.2. Diagrams with trivalent vertices. By proposition 2.10 the tensor is invariant,

and therefore if the Lie algebra g is simple, it must be a multiple of t =  
 . In that case,

let κ be the constant for which

= κ  
 . (30)

Using this definition, diagrams that have trivalent vertices can be reduced to diagrams
without trivalent vertices:

=
1

κ3

STU
=

1

κ3

(

−

)

. (31)

(The above equality should be read as an equality between the tensors represented by these
diagrams.)

In the case of the N dimensional representation of so(N), a comparison of and
(using (29)) shows that κ = 1. Furthermore, in this case (31) can be further reduced using
(29). The result is:

1
4 . (32)

In other words for D ∈ Dt,

T (D) = 2v−e
∑

M

sMN
b(τDM ), (33)

where

• v (e) is the number of internal vertices (edges) in D.
• The sum is over all possible markings M of the dashed lines of D, as in definition

6.4.
• sM is the sign corresponding to M as in definition 6.4.
• b(τDM) is the number of boundary components of the thickening τ(DM) of τDM ,

defined in remark 6.14.

Example 6.17. T
( )

can be computed in the following manner:

21−3
(

− 3 + 3 −
)

→ 2−2
(
N3−3N2+3N−N

)
=
N(N−1)(N−2)

4
.

6.3.3. Tensor products of representations. Recall that as in remark 2.12 we can consider
diagrams in which each directed arc is colored by a (possibly) different representation. The
following proposition can be used to reduce computations with arcs colored by a tensor
product R1 ⊗R2 to computations with arcs colored by R1 or R2:

Proposition 6.18. Let R1 and R2 be two representations of some Lie algebra g. The fol-
lowing is an equality between tensors in g∗ ⊗ R1 ⊗R2 ⊗ R

∗
1 ⊗ R

∗
2:

g∗
R1⊗R2

(R1⊗R2)∗
= g∗

R1 R2

R∗
1 R∗

2

+ g∗
R1 R2

R∗
1 R∗

2

.

Proof. Follows from the definition of the action of g on a tensor product, (R1 ⊗ R2)(ga) =
R1(ga)⊗ 1 + 1⊗ R2(ga). �
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Example 6.19. Let us compute T
( )

in the second tensor power of the defining represen-
tation of so(N). In the formula below, full lines are colored by the defining representation.

T
( )

= T
(

+ 2 +
)

=
1

2
N2(N − 1) + 0 +

1

2
N2(N − 1) = N2(N − 1).

Exercise 6.20. Verify that T(Λ1)⊗2

( )
= N(N − 1)(N2 −N + 2).

Definition 6.21. Let K : (S1 = {z : |z| = 1}) → R3 be a framed knot and let n(z)
(z ∈ S1) be a section of the normal bundle of K compatible with its framing. For a non-zero
integer q define the qth disconnected cabling K⊗q of K to be the q-component link whose jth
component K⊗q

j is given by

K⊗q
j (z) = K(z + jǫn(z)),

where ǫ is a very small number. Let K⊗q inherit the framing of K.

Exercise 6.22. Show that if V is a Vassiliev invariant of typem of framed knots then V ◦(K →
K⊗q) is also a Vassiliev invariant of type m. Show that the operations K → K⊗q on knots
and R→ R⊗q on representations are adjoints of each other — show that if V is a Vassiliev
invariant of type m of framed knots for which Wm(V ) = Wg,R,m, then Wm(V ◦(K → K⊗q)) =
Wg,R⊗q,m.

6.3.4. The Adams operations. Let q be a non-negative integer. If χ is a virtual character
on a compact Lie group G (i.e., a conjugation invariant L2 function on G), then so is ψ̄qχ,
which is defined by (ψ̄qχ)(g) = χ(gq). This defines an operation ψ̄q called the q’th Adams
operation on the representation ring R(G) of G (see e.g. [11, pp. 104]). We are interested in
this operation on the Lie algebra level. Recall that every character (and hence every virtual
character χ) induces a linear functional φ(χ) on the universal enveloping algebra U(g) of the
Lie algebra g of G.

Exercise 6.23. Let m denote the product of and let ∆U denote the co-product (see e.g. [31])

of U(g), and let ψ̂q : U(g)→ U(g) be the composition

U(g)
∆U−−−→ U(g)⊗ U(g)

1⊗∆U−−−→ . . .
1⊗(q−2)⊗∆U−−−−−−−→ U(g)⊗q

m
−−−→ U(g).

Then the operations ψ̄q and ψ̂q correspond under φ. In other words,

φ(ψ̄qχ) = (ψ̂q)∗φ(χ).

Exercise 6.24. Fix a Lie algebra g and a metric t, let D be a diagram with a distinguished
cycle of directed lines, let Tχ(D) denote the tensor associated with the diagram D when its
distinguished cycle is colored with the virtual representation χ, and recall that ψkD was
defined in definition 3.11. Show that

T(ψ̂q)∗χ(D) = Tχ(ψ
qD).

Example 6.25. For g = so(N) and Λ1 the defining representation,

T(ψ̂2)∗Λ1

( )
= TΛ1

(
ψ2

)
= 12TΛ1

( )
+ 4TΛ1

( )
= N(N − 1)(3N − 2).

In [2] it is shown that in an arbitrary special λ-ring the operations ψq are given by universal
polynomials in the ‘exterior power’ operations Λq. In fact, the opposite is also true and the
Λq’s can also be expressed in terms of the ψq’s. We have simple combinatorial algorithms
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for computations in the defining representation of so(N), for taking tensor products and for
applying the operations ψq. Combining all of these we see that we have effective algorithms
for computations in an arbitrary representation belonging to the λ-ring spanned by the
defining representation.

Example 6.26. Using the symbol g also for the adjoint representation of g = so(N), we have

g = Λ2 = 1
2

(

(Λ1)⊗2 − (ψ̂2)∗Λ1
)

and thus

T
( )

= Tg

( )
=
N(N−1)(N2−N+2)−N(N−1)(3N−2)

2
=
N(N−1)(N−2)2

2
.

Exercise 6.27. Use (33) to verify the above result.

Exercise 6.28. Let ΛN = ΛN
+⊕ΛN

− be the decomposition into irreducible representations of the
representation ΛN of so(2N). Show that for a diagram D ∈ Dt one has TΛN

+
(D) = TΛN

−
(D).

Hint 6.29. Use the fact that so(2N) has an outer automorphism that interchanges ΛN
+ and

ΛN
− .

Remark 6.30. Exercise 6.28 implies that TΛN
±
(D) = 1

2
TΛN (D), and thus we have an effective

algorithm for computing TΛN
±
(D). Notice that the representations Λ0, Λ1, . . ., ΛN−1, ΛN

±

span the representation ring of the group13 SO(2N) and that the representations Λ0, Λ1, . . .,
ΛN span the representation ring of the group SO(2N + 1). We see that the results of this
section allow us to compute TR(D) for any representation R of the group SO(N).

6.3.5. Exterior powers. The previous section had already given us (indirect) means to com-
pute TΛqR for representations R for which we know how to compute TR. The following
exercise gives a more direct way to do the same:

Exercise 6.31. Let

q
︷ ︸︸ ︷

...

...

denote the qth total antisymmetrization tensor — for example,

1
3! ,

Let ...

...

denote the standard action of g on R⊗q as in proposition 6.18:

.

Prove the obvious generalization of the following statement:

TΛ3R

( )
= TR

( )

= TR

( )

.

13Notice the distinction between the group SO(N) and the Lie algebra so(N). The Lie algebra has spin
representations that do not integrate to single-valued representations of the group.
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6.3.6. Other Lie algebras. So far we have dealt only with a single Lie algebra, and varied its
representation. Let us now try to vary the algebra:

Exercise 6.32. Let (gC, RC) be the complexification of a pair (g, R) consisting of a real Lie
algebra g and a representation R of g in a real vector space. Show that WgC,RC,m = Wg,R,m

for every m (and therefore no new information can be gained by studying, say, the various
real forms of so(N,C)).

Exercise 6.33. External tensor products correspond to the co-product on A (or equivalently,
to the product in A∗). In other words, let g1 and g2 be Lie algebras, let t1 and t2 be metrics
and let R1 and R2 be representations of g1 and g2 respectively. Consider the Lie algebra
g1⊕g2 with the metric t1⊕ t2 and the external tensor product representation R1⊗R2. Then
the following diagram is commutative:

A
∆
−−−→ A⊗A

TR1⊗R2



y



yTR1

⊗TR2

C
m
←−−− C⊗C

Exercise 6.34. Show that a linear functional ω on A∗ associated to some one dimensional
representation of a one dimensional Abelian Lie algebra is an (easily describable) unit in
the algebra A∗. Show that the same linear functionals on GmA

∗ appear as Wm(V ) where V
is the coefficient of xm in a framed-knot invariant of the form K → exp(rxw(K)), r is an
arbitrary constant, and w(K) is the writhe (see e.g. [22]) of K. Show that ω ∈ (Φ ◦ σ̄)∗M∗.

Exercise 6.35. Check that higher dimensional Abelian Lie algebras give the same linear
functionals on A as one dimensional Lie algebras.

Exercises 6.33 and 6.34 taken together show that (in our context) studying the sl family
is essentially equivalent to studying the gl family. So let us pick one of them:

Exercise 6.36. The gl(N) analogs of equations (29), (32) and (33) are

T αγβδ =
α

β

δ

γ
=

α

β

δ

γ
, (34)

0 1

, (35)

and

T (D) =
∑

M

(−1)sMN b(τDM ), (36)

where here

• The sum is over all possible markings M of the internal vertices of D by the digits 0
and 1.
• sM is the sum of all the digits in M .
• b(τDM) is the number of boundary components of the thickening τ(DM) of τDM .

Internal vertices are thickened depending on the digit marked on them using one of
the two possibilities in (35) and chords are always thickened as if they were marked
by an ‘=’ symbol.
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Notice that the exterior powers of the defining representation of gl(N) generate its repre-
sentation ring, and thus we have effective computation techniques for gl(N) in all of its
representations.

Exercise 6.37. Find the analogs of equations (29), (32) and (33) for the Lie algebra sp(N)
or read them in Bar-Natan, [5, 6]. Use straightforward (but rather tricky) combinatorics
to show that if D is a diagram with no univalent vertices but with an arbitrary number of
cycles of directed lines marked by the defining representation, then

Tsp(N)(D) = Tso(−2N)(D) (37)

where Tso(−2N) is defined as in (33), only with (−2N) replacing N .

Problem 6.38. I learned about equation (37) from M. Kontsevich [25]. He claims that the
above result follows from studying the super Lie algebra Osp(m,n). I believe, but as of now
I can not reproduce his result.

Notice that the exterior powers of the defining representation of sp(N) generate its rep-
resentation ring, and thus we have effective computation techniques for sp(N) in all of its
representations.

Problem 6.39. The results of Kuperberg [27] can be used to derive an explicit algorithm
for computations using the rank 2 exceptional Lie algebra G2 (see also [35]). I do not know
whether the results are inside (Φ ◦ σ̄)∗M∗.

6.4. Marked surfaces and the classical Lie algebras. In this section we will prove
theorem 11 and a few related results. We will do so by constructing a vector space L and a
pairing 〈·, ·〉 :M⊗L→ F that has the following properties:

Proposition 6.40. (Proof on page 45) For an element L ∈ L denote by Ψ(L) the pullback
to B∗ via the map Φ of the linear functional (M 7→ 〈M,L〉) ∈ M∗. Then for every list
of triples {(gi, Ri, mi)} where each gi is either an so or a gl algebra with R a single-valued
representation of the corresponding group there is a (non-unique) generator L ∈ L for which

Ψ(L) = χ̄∗
∏

i

Wgi,Ri,mi
. (38)

Conversely, for every generator L ∈ L there is a (canonically determined) list of triples
{(gi, Ri, mi)} for which (38) holds. (For the definition of the isomorphism χ̄ see page 29).

Proposition 6.41. (Follows from (37) and exercises 6.34 and 6.51) Let m be a non-negative
integer. If g is a symplectic or an Abelian algebra and R is a representation of g or if g is
in the family so and R is a spin representation, then Wg,R,m ∈ (Φ ◦ σ̄)∗M∗.

Proposition 6.42. (Proof on page 46) The pairing 〈·, ·〉 is non-degenerate in the sense that
if M̄1 and M̄2 are linear combinations of normalized marked surfaces and 〈M̄1, L〉 = 〈M̄2, L〉
for every L ∈ L, then M̄1 = M̄2.

Clearly, these three propositions together with remark 6.12 imply theorem 11.

6.4.1. The pairing 〈·, ·〉. By a covering of the circle we will mean a not necessarily connected
oriented covering of the oriented circle, regarded up to an orientation preserving homeomor-
phism. Such coverings can be identified with non-empty finite sets14 of integers measuring

14In this section the word “set” means ‘an unordered collection with multiplicities’. I.e., {2, 2, 1} =
{2, 1, 2} = {1, 22} 6= {1, 2}. Notice that for a set {q, . . . , q} of size β we sometimes use the notation {qβ}.
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the multi-degree of a cover:

←→ {−2, 2, 1}.

Exercise 6.43. Explain how coverings of the circle correspond to general cablings of framed
knots, generalizing definitions 3.13 and 6.21. Generalize exercises 3.14 and 6.22 to general
cablings.

A labeled covering will be a quadruple L = (s,N, L0, m) where L0 is a covering of the
circle, m is a non-negative integer called ‘the degree of L’, s is called ‘the symbol of L’ and
is either the symbol ‘gl’ or the symbol ‘so’, and N is an integer. A covering bouquet is a
finite non-empty set of labeled coverings of the circle — something that looks like

{(gl, 54, {2, 2, 1}, 6) , (so, 9, {7, 3}, 14) , . . .} .

Definition 6.44. Let L be the vector space spanned by the collection of all covering bou-
quets.

Definition 6.45. Let L = (s,N, L0 = {q1, . . . , qk}, m) be a labeled covering of the circle
and let M be a marked surface with n marked tangents. Define

〈M,L〉 =







0 if degM 6= m,

0 if s =‘gl’ and M is not
normalized orientable,∑

π∈Sn

∑

all liftings
l of π

N b(τL0∪lM) otherwise,
(39)

where:

• The outer sum is over the n! ways (each indexed by a permutation π ∈ Sn) of
arranging the n markings of M around the base S1 of the covering L0.
• The inner sum is over the (

∑
|qi|)

n ways of lifting π from the base S1 to the covering
itself.
• τL0 is the thickening of L0 into a disjoint union of k punctured disks as described in

exercise 6.14.
• τL0 ∪l M is the punctured surface (with boundary) obtained by gluing M to τL0 in

the n sites specified by l, in such a way that in each such site the orientation given
on L0 matches with the corresponding marking of M .
• b(τL0 ∪l M) is the number of boundary components of τL0 ∪lM .

Example 6.46. Let us compute the pairing of a disk marked by three aligned tangents with
the labeled covering (gl, N, {1, 1}, 2). The sum is over 48 terms, but after dividing by the
3-fold cyclic symmetry of the circle and by the possibility to exchange the two leafs of the
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covering, we get only 4 types of contributions. Observed from above, this is how it looks:

〈

,

〉

→ 6 + 18 + 6 + 18

→ 6N4 + 18N2 + 6N2 + 18N2 = 6N2(N2 + 7).

Definition 6.47. Let {Mi}
c
i=1 be the connected components of a general marked surface

M ∈ M and L = {Lk}
γ
k=1 be a presentation of a covering bouquet as a set of labeled

coverings. Define

〈M,L〉 =

γ∑

k1,...,kc=1

γ∏

k=1

〈
⋃

{i:ki=k}

Mi, Lk

〉

,

and extend 〈·, ·〉 linearly to all ofM⊗L.

6.4.2. Proof of proposition 6.40.

Lemma 6.48. For any m and N , Ψ ({(so,N, {1}, m)}) = Wso(N),Λ1,m.

Proof. Follows immediately from the definition of the pairing 〈·, ·〉, from the definition (6.9)
of the map Φ, from the definition of χ̄, and from (33). �

Lemma 6.49. For any m and N , Ψ ({(gl, N, {1}, m)}) = Wgl(N),Λ1,m.

Proof. Consider a Chinese character C as a one dimensional CW-complex. A marking C̃ of
C defines a co-chain β(C̃) ∈ C1(C,Z/2Z) — for an edge l in C define

β(C̃)(l) =

{

0 l is marked by an ‘=’ symbol,

1 l is marked by a ‘×’ symbol.

It is easy to check that the thickening τC̃ of C̃ is orientable iff β(C̃) is a co-boundary,
i.e. iff there exists an α ∈ C0(C,Z/2Z) for which β(C̃) = dα. Also, τC̃ is normalized
orientable iff such an α can be found which vanishes on the external (univalent) vertices of

C. In such a case, α is uniquely determined by β(C̃). In computing Ψ ({(gl, N, {1}, m)}) a
signed summation over normalized orientable thickenings of C is performed (see definition
6.4 and 6.45), and by the above discussion it can be replaced by a signed summation over
α ∈ C0(int C,Z/2Z). Comparing with (36), we see that we are done. �

Exercise 6.50. Let Λ1 be the defining representation of so(N) or gl(N), and let P q denote the

virtual representation (ψ̂q)∗Λ1. Use proposition 6.18, exercises 6.23 and 6.33 and equation
(26) to prove the obvious generalization of the statement:

Ψ ({(gl, 54, {2, 2, 1}, 6) , (so, 9, {7, 3}, 14)}) = χ̄∗
(
Wgl(54),P 2⊗P 2⊗P 1,6 ·Wso(9),P 7⊗P 3,14

)
.

Clearly, lemmas 6.48 and 6.49 and exercise 6.50 prove proposition 6.40. The following
exercise is the remaining ingredient for the proof of proposition 6.41:

Exercise 6.51. The crux of the argument leading to computations for the Lie algebra so is
equation (32), used to simplify internal vertices of a diagram. This equation is valid no
matter what representation is used on the external circle surrounding a diagram in Dt. Use
this fact to show that if R is a spin representation of so(N) (or, in fact, any representation
of so(N)), then Wso(N),R,m ∈ (Φ ◦ σ̄)∗M∗.
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6.4.3. Proof of proposition 6.42. The idea is to show that all relevant information about a
normalized marked surface M can be read from the numbers 〈M,L〉 for various L’s. Keeping
exercise 6.13 and the classification of 2D surfaces (see e.g. [30]) in mind we see that (for a
connected normalized surface) it is enough to read its degree, whether it is orientable, and
the number of markings on each of its boundary components.

Exercise 6.52. Let M be a disk with n aligned tangents marked on its boundary (so that
degM = n − 1). Prove that the highest power of N in 〈M, (so or gl, N, {1}, n− 1)〉 is Nn

and that in the sum (39) this power is achieved only when the lifting l arranges the markings
of M along the leaf S1 of the covering {1} in order. Conclude that

〈M, (so or gl, N, {1}, n− 1)〉 = nNn + (lower order terms).

Exercise 6.53. The same is still true for the cover {q}. Only that in this case there are
more liftings of the markings of M to the leaf of the cover that keep them in order. More
precisely, let p be the number of non-decreasing sequences of length n − 1 of non-negative
integers smaller than q. Prove that

〈M, (so or gl, N, {q}, n− 1)〉 = qpNn + . . . = q

(
q + n− 2

n− 1

)

Nn + . . .

=

(
qn

(n− 1)!
+ (lower powers of q)

)

Nn + . . . .

Exercise 6.54. Let M =
⋃b

1Mi be a disjoint union of b disks with ni aligned tangents marked
on the boundary of the ith disk, 1 ≤ i ≤ b. Let m be the degree of M , let n =

∑
ni be the

total number of markings on M and let Lβ(N) be the labeled covering
(
so or gl, N, {1β}, m

)
.

Prove that the highest power of N in 〈M,Lβ(N)〉 is Nβ−b+n, and it is attained in the sum
(39) only in the cases were the lifting l satisfies:

• For each i, all the markings on Mi lift to the same component of Lβ , and the cyclic
ordering induced on them from the cyclic ordering the points of that component
agrees with their cyclic order on the boundary of Mi.
• If, for some i and j, the disks Mi and Mj lift to the same component L0 of Lβ, then

they are non-interlaced — L0 can be cut into two disjoint arcs Ai and Aj , so that Ai
(Aj) is connected only to Mi (Mj).

Definition 6.55. The width of a monomial Q in the variables q1, . . . qβ is the number of the
qi’s that appear in Q in a positive power. For example, the width of the monomial x2y3z is
3. The maximal width of a polynomial P is the maximal width of a monomial in P .

Exercise 6.56. Prove that ifM is as in the previous exercise and Lβ(N) is the labeled covering
(so or gl, N, {q1, . . . , qβ} , m), then the same conclusion as in the previous exercise holds. Let
Q be the coefficient of Nβ−b+n in 〈M,Lβ(N)〉. Prove that Q is a polynomial of maximal
width min(b, β) in q1, . . . qβ , and that if in addition it is given that β ≥ b then

Q =

(

b!
∑

1≤j1<...<jb≤β

b∏

i=1

qni

ji

(ni − 1)!

)

+

(
terms of lower width or

order in q1, . . . qβ

)

. (40)
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Notice that the above exercise shows that if M is a connected normalized surface than its
isomorphism class can be read from the numbers 〈M,L〉 for various L. The degree of M can
be read from the degree of any L for which 〈M,L〉 6= 0. M is not orientable iff 〈M,L〉 = 0
for all L of symbol gl, b can be read by increasing β until the width of Q stops growing, and
then the number of markings on each component of the boundary of M can be read from
the powers of the qj ’s appearing in (40).

If M is a general normalized surface, we will show that its isomorphism class can be read
from the numbers 〈M,L〉 where L is a bouquet L = ∪Lβk

k (Nk) where each Lβk

k (Nk) is a
labeled covering of the type considered in exercise 6.56:

L =
{
(s1, N1, {q11, . . . , q1β1}, m1), . . . , (sγ, Nγ, {qγ1, . . . , qγβγ

}, mγ)
}
,

here each sk is either so or gl.

Exercise 6.57. For fixed sk’s and fixed mk’s, show that P = 〈M,L〉 is a polynomial in the
variables N1, . . . , Nγ, q11, . . . , qγβγ

and that this polynomial is divisible by
∏γ

k=1Nk.

We will now define an ordering � among the monomials that appear in 〈M,L〉 and show
that from the �-maximal monomial in 〈M,L〉 the isomorphism class of M can be read.

Definition 6.58. Order monomials in the variables N1, . . . , Nγ , q11, . . . , qγβγ
which are di-

visible by
∏
Nk lexicographically according to the following parameters of such a monomial

Q:

• The total degree of Q in the variables N1, . . . , Nγ.
• The width of Q /(

∏
Nk) in the variables N1, . . . , Nγ .

• The width of Q in the variables q11, . . . , qγβγ
.

• The power of q11 in Q.
• The power of q12 in Q.

...

• The power of qγβγ
in Q.

Exercise 6.59. LetM be a normalized marked surface. For a fixed γ, set sk = so, (1 ≤ k ≤ γ).
Find some values for m1, . . . , mγ for which 〈M,L〉 is non-zero (show that this is possible
whenever γ is sufficiently large), and call the resulting polynomial Pγ . Let c be the maximal
value of γ for which the maximal width wγ of Pγ /(

∏
Nk) is still equal to γ (show that such

a value of γ exists and that wγ is constant for γ ≥ c). For that value of γ, fix β1, . . . , βγ
for which the maximal width of Pγ in the variables q11, . . . , qγβγ

has reached its maximal
possible value (show that this ‘settling of width’ indeed happens). Let Q be a �-maximal
monomial in Pγ . Show that M is the union of c connected components (orientable or not)
M1, . . . ,Mc satisfying:

• degMk = mk.
• The width bk of Q in the variables qk1, . . . , qkβk

is equal to the number of boundary
components of Mk.
• Order the boundary components of Mk in some way Bk1, . . . , Bkbk so that the number
nkj of markings on Bkj is a non-increasing function of j. Then nkj is equal to the
degree of qkj in Q.
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Exercise 6.60. For a fixed γ and m1, . . . , mγ as before, find a maximal set S of sk’s that can
be changed from so to gl so that the �-order of the resulting Q remains the same as in the
previous exercise (such a set might be empty). Show that the components Mk corresponding
to the sk’s in S are orientable.

The last two exercises show that the isomorphism class of M can be read from the numbers
〈M,L〉. We now just need to show that if M̄ is a linear combination of normalized marked
surfaces and 〈M̄, L〉 = 0 for all L’s, then M̄ = 0.

Exercise 6.61. Show that this is indeed the case.

Hint 6.62. Define an ordering relation ≪ on normalized marked surfaces in a way similar
to the definition of �. Show that the coefficient of the ≪-maximal surface appearing in M̄
with a non-zero coefficient can be read from 〈M̄, L〉 using the previous two exercises. �

6.5. Marked surfaces and the classical knot polynomials. Using everything that we
already know, the simplest way to prove theorem 12 is to recall (see Turaev [35, 37, 41])
that the HOMFLY polynomial is built from the Lie algebra sl(N) (or from the essentially
equivalent (see exercise 6.34) Lie algebra gl(N)), that the Kauffman polynomial is built
from the Lie algebra so(N), and that cabling these polynomials corresponds to taking higher
representations of those groups. Remembering all that, theorem 12 follows immediately from
theorem 11. Alternatively, if one does not want to use theorem 5, it is easy to get equations
(34) and (36) from the power series expansion in the variable x of a framing dependent
version of the HOMFLY polynomial,

P f
( )

− P f
( )

= (ex/2 − e−x/2)P f
( )

;

P f

( )

= eNx/2P f
( x



)

,

and to get equations (29) and (33) from the power series expansion in the variable x of a
framing dependent version of the Kauffman polynomial,

F f
( )

− F f
( )

= (ex/2 − e−x/2)
(
F f
( )

− F f
( ))

;

F f

( )

= e
N−1

2
xF f

( x



)

. �

6.6. More on conjecture 2. Recalling that Φ ◦ σ̄ = τ ◦ µ ◦ σ̄ and that σ̄ and τ are
isomorphisms (theorems 8 and 14), we see that conjecture 2 is true iff the map µ is one-
to-one iff its adjoint µ∗ is onto. Keeping in mind theorem 12, we see that conjecture 2 is
essentially the assertion:

• Vassiliev invariants are precisely as powerful as the HOMFLY and Kauffman poly-
nomials and all of their cablings.

Whether or not this assertion is true, asking whether µ is 1-1 is clearly a simpler way of
stating it, perhaps making it easier to resolve.

I have the following evidence to support conjecture 2:

• It had been verified up to degree 9.
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• Its natural generalization had been verified for homotopy link invariants15 (see [8]). A
homotopy link invariant is a link invariant that does not change when an overcrossing
in which only one component of the link is involved is replaced by an undercrossing.
• Conjecture 2 is similar in form to the question of whether any weight system can be

integrated to a knot invariant, which, after some hard work in section 4, was answered
affirmatively. In both cases the question is whether a certain map is onto; in the case
of conjecture 2 the map is the adjoint of

)) ((( ) , (41)

while in the case of section 4 the map is the adjoint of

B → − .

• To prove conjecture 2 one needs to show that it is possible to extend any functional
φ defined on B to a functional (also called φ) defined on the space Bpm of partially
marked diagrams — diagrams in which only a part of the arcs are marked — so that
the extended φ maps (41) to an equality. It is not hard to show that over Z/2Z it
is possible to consistently extend every functional defined on unmarked diagrams to
diagrams marked exactly once.

7. Odds and ends

7.1. Some questions.

7.1.1. Why Lie algebras? In some sense (theorem 1) studying the algebra A is exactly the
same as studying Vassiliev invariants, and indeed, some of the structure of A can be un-
derstood in terms of knot theory (remark 3.2, exercises 3.6, 3.10, 3.14). The algebra A (or,
in fact, A∗) also has a (weaker) relation with Lie algebras (theorem 4 and conjecture 1), a
relation which is not 1-1 (exercises 6.28 and 6.35) and not known to be onto. However, many
of the results about A have a Lie theoretic interpretation but seem to have no knot theoretic
interpretation.

Problem 7.1. Interpret theorems 6 and 8 and remark 5.7 in terms of knot theory.

7.1.2. Why surfaces. A Short glance at the diagram in section 1.9 shows that to every marked
surface naturally corresponds a knot invariant, and that the knot invariants thus obtained
are rather strong.

Problem 7.2. Understand why do marked surfaces appear in knot theory. Find a direct
topological construction for the invariant corresponding to a marked surface.

7.1.3. The ground ring.

Problem 7.3. How much of the theory of sections 4, 5 and 6 carries over to an arbitrary
ground ring? A computer search (e.g. dimGmA was re-computed over fields of small prime
characteristics) suggests that perhaps everything carries over.

15I wish to thank C. Day for teaching me about this class of invariants.
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7.1.4. Higher products. On B (and therefore also on A) there is a second grading: by the
number of external vertices in a Chinese character. Furthermore, B has various higher
products; for a positive integer j and a pair of Chinese characters C1, C2 define mj(C1, C2)
to be the sum over all possible ways of sewing C1 and C2 along j external vertices:

m1

(

,
)

= 4 ; m2

(

,
)

= 8 + 4 .

Superficially, m1 and the product of A are defined in similar ways. However, there appears
to be no obvious relation between the two — their images are not even in the same degree!

Problem 7.4. Understand the second grading of A and the higher products mj in terms of
knot theory. Investigate the relations between the mj and the other structures introduced
in this paper.

7.2. Some bad news. The algebra A has a natural involution — simply map every chord
diagram D ∈ Dc into the same diagram, only with the orientation of its circle reversed. In
the language definition 3.11, this is just the operation ψ−1, and therefore by exercise 3.14 it
corresponds to the operation of orientation reversal for knots (reversal of the orientation of
the knot itself, not of the ambient space!). Being an involution, ψ−1 ((ψ−1)∗) decomposes
A (A∗) into a sum of a +1 eigenspace and a −1 eigenspace. Call a diagram D ∈ A (a
functional W ∈ A∗) even if it satisfies ψ−1D = D ((ψ−1)∗W = W ) in A (A∗), and call it
odd if it satisfies ψ−1D = −D ((ψ−1)∗W = −W ).

Problem 7.5. Are there any odd diagrams? (This question was first raised by J. Birman)

A computer search has shown that all diagrams are even up to degree 9. This is rather
disturbing because it means that all Vassiliev invariants up to degree 9 are even, i.e., cannot
tell a knot from its inverse (its orientation reversed version). Even worse than that is true —
if conjecture 2 or even conjecture 1 is true, then all Vassiliev invariants are even, contradicting
the hope implicitly expressed in problem 1.1:

Exercise 7.6. Show that via the isomorphism A ↔ B, an even (odd) diagram is carried to a
Chinese character with an even (odd) number of external vertices.

Exercise 7.7. Without using theorems 11 or 12, show that if C ∈ B is a Chinese character
with an odd number of external vertices, then Φ(C) = 0.

Exercise 7.8. Show that if g is a semi-simple Lie algebra and R is an arbitrary representation
of g, then Wg,R,m is even for every m.

Hint 7.9. Use exercise 6.32 and the fact that every Lie algebra over the complex numbers
has a conjugate-linear involution (The Cartan involution) that carries every representation
to its complex conjugate.

7.3. Bibliographical remarks. In addition to the works mentioned in the body of this
paper, the following papers also discuss Vassiliev invariants: J. C. Baez [4] (Vassiliev invari-
ants for braids, relations with Chern-Simons theory and with quantum gravity) C. Day [14]
(Vassiliev invariants of links), M. Gusarov [18], A. B. Sossinsky [38], T. Stanford [39] (Vas-
siliev invariants of links and graphs), and T. Stanford [40] (Vassiliev invariants for braids,
examples for knots that cannot be separated apart by Vassiliev invariants of a fixed type).
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