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Abstract. The standard proof that the potential function models the Alexander-Conway
polynomial depends on the fact that all spanning surfaces of a link are tube-equivalent [K1].
Proofs that all spanning surfaces of a link are tube-equivalent use machinery such as the
Thom-Pontrjagin construction [L]. Here we present an elementary geometric argument in
the case of links in S3 which allows one to visualize the additions and removals of tubes.
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1. Introduction

Let L be an oriented 1-dimensional link in S3. A spanning surface for L is a compact,
oriented two-dimensional manifold S in S3 such that S has oriented boundary L (for technical
convenience, we’ve dropped the connectivity assumption. This only makes our results below
more general). Two spanning surfaces are called tube-equivalent or S-equivalent if they are
related up to ambient isotopy by the addition or removal of tubes, where each addition of a
tube is required to preserve the orientability of the surface. See for instance Figure 1.

Figure 1. Two parts of a spanning

surface, before and after the addition

of a tube.

Our main theorem is:

Theorem 1. Let S1 and S2 be two spanning surfaces for the same link L. Then S1 and S2

are tube-equivalent.
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This theorem is well known; see e.g. [K1]. The theorem appears to be the only non-
elementary part in the proof (appearing there) that the potential function provides a model
for the Alexander-Conway polynomial, and its standard proof uses some facts about Morse
theory and 3-dimensional manifolds. The purpose of this note is to give an elementary proof
of Theorem 1, using only standard knot-theoretic arguments.

2. Some background and preliminary work

A surface is said to be in band-handle form if, as in Figure 2, it is a standardly embed-
ded disk with bands attached (these bands may be twisted or linked). It follows from the
classification theorem for 2 dimensional compact manifolds that every spanning surface is
abstractly homeomorphic to a surface in band-handle form. By shrinking a spanning sur-
face towards its 1-dimensional skeleton one concludes that every spanning surface is ambient
isotopic to a surface in band-handle form. This is discussed in [K2, pp. 81].

Figure 2. A surface in

band-handle form.

There is an algorithm, due to Seifert [S], which constructs a spanning surface for any
oriented link L, given a planar projection of that link. As our proof makes use of this
algorithm, we describe it as follows. For more details see [K2]. A surface produced by
Seifert’s algorithm is called a Seifert surface or an algorithm surface.

1. At each crossing in the projection draw arcs as in Figure 3. Then form a set of disjoint
closed curves, called Seifert circles, by tracing along the edges of the projection and
moving along the arcs when arriving at a crossing. (These circles may be nested).
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Figure 3. Adding arcs near crossings

in a link projection.
Figure 4. Addings bands between

Seifert circles.

2. Define the depth d(C) of a Seifert circle C to be the number of Seifert circles in which
it is properly contained. Translate each circle C upward (toward the reader) by d(C)
units, and attach a disk inside each Seifert circle. Assign “colors” (say black b and
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white w) to the sides of each disk by the convention that the oriented boundary runs
counterclockwise as seen from the black (b) side.

3. Between Seifert circles where a crossing existed, add twisted bands, according to the
crossing in L, as in Figure 4. Note that this is always possible, since if a crossing existed
between Seifert circles, their depths differed by at most 1. It is easy to see that the
coloring of the disks can be continued across the twisted bands, and thus the resulting
surface is orientable.

Figure 5 shows the result of Seifert’s algorithm applied to a projection of the trefoil knot.
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Figure 5. A Seifert surface for the trefoil knot.

Remark 2.1. One can easily check that the result of the above algorithm depends only on the
projection of L considered as a graph (with crossing information) in S2. In other words, the
resulting surface does not change when curves in the projection are moved “across infinity”.

In the proof of Theorem 1, we will use the familiar three Reidemeister moves, connecting
any planar projection of L to any other such projection [R]:

2) 3)1)

It is helpful to introduce some notation. The symbols + and − are for crossings as in
Figure 6. The symbol ? means that the crossing can be either + or −. The symbol | denotes
a Seifert circle, and the symbols +,−, | can be combined as in Figure 7. Note that the arrows
indicate orientation, but need not be included if the orientation chosen is irrelevant. Distinct
|’s correspond to distinct Seifert circles. The relative heights of the circles involved are not
relevant, and hence are not indicated pictorially. The symbol |T | will denote a tube as in
Figure 1.
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Figure 6. Two types of crossings. Figure 7. Example of notation.

Lemma 2.2. Connecting two surfaces with two adjacent twisted bands with opposite twists

is equivalent to adding a tube between them. Symbolically, the relation +− −
+== T holds.
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Proof. The proof is clear from the figure on the right, which
shows the case where the two surfaces are disks. The disks can
be pulled apart, and the region with lined arrows becomes the
boundary of the tube between them. A similar argument shows
that the theorem is true if we switch the + and −. ¤

Lemma 2.3. The following four relations hold:

+ ++
+

∼?

? +
∼+ +

+?

?
2.

− − −
−

∼?

?
3. −− − −∼?

?
4.

1.

That is, surfaces with local crossing configurations as indicated above are tube-equivalent.

Remark 2.4. Note that the cases 1–4 in Lemma 2.3 enumerate all of the type 3 Reidemeister
moves in braided form, with all lines oriented in the same braiding direction.

Proof of Lemma 2.3. To prove the first relation, slide the left
and right sides of ? down along the two thickened lines in the
picture shown on the right, until it becomes a twisted band
between A and B, instead of between B and C. The second
relation in the case of ? = + is the same as the first relation in
the case of ? = +, so it also follows.

?

A B C

The second relation in the case of ? = − is only a bit more difficult, and the proof in that
case uses the first relation as well as two applications of Lemma 2.2:
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−
∼ ∼ ∼ ∼ ∼ .

The third and fourth relations are proven in a similar way. ¤

3. Proof of Theorem 1

As stated in Section 2, every spanning surface is ambient isotopic to a surface in band-
handle form. We may thus assume S1 and S2 are in band-handle form.

The proof has two steps. The first step is to show that a spanning surface in band-handle
form is tube-equivalent to an algorithm surface. The second step is to fix link projections
L1 and L2 of L and show that the algorithm surfaces of L1 and L2 are tube-equivalent. This
will be done by analyzing how performing a Reidemeister move on a link projection affects
the corresponding algorithm surface. This second step is inspired in part by a remark in
[K2, pp. 198].

For the first step of the proof, suppose the spanning surface is in band-handle form. We
want to show that it is tube equivalent to the algorithm surface. As is shown in Figure 8,
adding a local twist to the surface in band-handle form does not change the algorithm surface.
Thus we may assume (by performing a local twist on one of the bands if necessary), that at
every crossing in the band-handle surface, the two bands are oriented as in Figure 9. Having
the bands oriented as in Figure 9 guarantees that the Seifert circles from the algorithm
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surface lie inside the two bands (as opposed to lying in the complement of the bands). In
fact, as is illustrated in Figure 10, the algorithm surface can be obtained from the surface in
band-handle form by adding a tube between the lower band and upper band. Since the tube
is added between two black sides, the surface so obtained is orientable. The regions marked
1 and 2 in Figure 10 correspond to the lower band and upper band respectively. The vertical
tube is also indicated. The arrows on the boundary of the tube point in the direction of
increasing height.

Figure 8. A local twist has no

effect on the algorithm surface.
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Figure 9. A crossing in the span-

ning surface.

Figure 10. Tube equivalence of

band-handle surface and algorithm sur-

face.

We now proceed to the second step of the proof by analyzing how the algorithm surface
changes under each of the Reidemeister moves.

For the first Reidemeister move, there is essentially only one case to consider and it is
shown in Figure 11. As is also clear from Figure 11, the first Reidemeister move leaves
unchanged the surface produced by Seifert’s algorithm.

Figure 11. The effect of Move 1 on the algorithm surface:
b wb

For the second Reidemeister move, assume that the circle on the left moves over the circle
on the right. There are three cases to analyze (see Figure 12) depending on the orientations
of the strands involved and on the way they close into Seifert circles. (Some more possibilities
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are reduced to these three by using Remark 2.1). Figure 12 shows the algorithm surface before
and after the second Reidemeister move is performed. One easily sees the tube-equivalence
of the ‘before’ and ‘after’ surfaces in each case: In case 1, just untwist the middle “w” in
the ‘after’ surface. In case 2, use Lemma 2.2. In case 3, untwist the middle w in the ‘after’
surface. The result is easily seen to be the same as the ‘before’ surface, with one tube added
as in Figure 1 between the two w disks.

−

+

w

w

w

w

case 3case 2case 1

before:

after:

b

w

b

b

b

b w

+

−

w

Figure 12. The three cases of the second Reidemeister move.

For the third Reidemeister move, there are four cases based on the orientations of the three
strands involved (see Figure 13). The dotted boundary which appears in all figures involving
the third move represents a small sphere in which all ambient isotopies and additions and
removals of tubes will occur. This emphasizes that all arguments which follow are local.

1.

3. 4.

2.

Figure 13. Possible cases of Move 3.
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Cases 1-3 follow from Lemma 2.3. This is indicated in Figure 14. Case 4 differs from
cases 1-3 by Reidemeister moves of type 2, as shown in Figure 15. Hence the algorithm
surfaces for the two sides of case 4 are tube-equivalent by the work we have already done. ¤

Figure 14. The effects of cases 1–3 1.
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Figure 15. A case 4 move is a composition of four type 2 moves and a single move from cases 1-3.
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