FLAG VARIETIES ASSIGNMENT 1 DUE FRIDAY OCTOBER 14

(1) Let $\underline{k} = (k_1, \ldots, k_m)$ be natural numbers with $k_1 + \cdots + k_m = n$. For any vector space V of dimension n, let $Fl(\underline{k}, V)$ denote the partial flag variety

 $\{0 \subseteq V_1 \subseteq \cdots \subseteq V_m = V : \dim V_i = \dim V_{i-1} + k_i\}$

- (a) How many B-orbits are there on Fl(k, Cⁿ)? (As usual B denotes the subgroup of upper triangular matrices.) As usual, these B-orbits are called Schubert cells.
- (b) Find the dimension of the Schubert cells.
- (c) Describe the Schubert cells in terms of intersections with the standard flag.
- (d) Recall that if $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$, then H_{λ} denotes the set of Hermitian matrices with eigenvalues $\lambda_1, \dots, \lambda_n$. Recall that if λ_i are distinct, then we constructed an isomorphism between H_{λ} and the full flag variety. For each \underline{k} , find some λ , such that there is a natural bijection $H_{\lambda} \cong Fl(\underline{k}, \mathbb{C}^n)$.
- (e) A special case of a partial flag variety is a Grassmannian. This corresponds to the choice $\underline{k} = (k, n k)$. In this case, show that there are $\binom{n}{k}$ Schubert cells.
- (2) Let $\lambda \in \mathbb{Z}^n_+$ be a dominant weight and let $V(\lambda) = \Gamma(Fl_n, \mathcal{O}(\lambda))^*$. Recall
 - that in class we showed that $V(\lambda)$ is an irreducible representation of GL_n .
 - (a) In class, we constructed a non-zero N-invariant section $s \in \Gamma(Fl_n, \mathcal{O}(\lambda))$. Show that this section has weight $(-\lambda_n, \ldots, -\lambda_1)$.
 - (b) If V is any representation of GL_n and μ is any weight, use the embedding $S_n \subset GL_n$ to prove that $V_{\mu} \cong V_{w\mu}$ for any $w \in S_n$.
 - (c) Use the first two parts to deduce that $V(\lambda)_{w\lambda}$ is 1-dimensional for each $w \in S_n$.

Recall that we write

$$\lambda \ge \mu$$
, if $\lambda - \mu \in Q_+ = \{\sum_{i=1}^{n-1} p_i \alpha_i : p_i \in \mathbb{N}\}$

(where $\alpha_i = (0, \dots, 0, 1, -1, 0, \dots, 0)$). The following Lemma from representation theory is helpful.

Lemma 1. If $\lambda, \mu \in \mathbb{Z}^n_+$ and $\mu \leq \lambda$, then $V(\lambda)_{\mu} \neq 0$.

- (d) Use the lemma to find all $\lambda \in \mathbb{Z}_+^n$ such that the restriction map $\Gamma(Fl_n, \mathcal{O}(\lambda)) \to \Gamma(Fl_n^T, \mathcal{O}(\lambda))$ is an isomorphism.
- (3) In this question, we consider $Fl_n \to \mathbb{P}(\mathbb{C}^n) \to \mathbb{P}(\operatorname{Sym}^k \mathbb{C}^n)$, where the first map takes V_{\bullet} to V_1 and the second map is the Veronese.
 - (a) Show that the pullback of $\mathcal{O}(1)$ to Fl_n is the line bundle $\mathcal{O}(k\omega_1)$.

- (b) Show that $\operatorname{Sym}^k \mathbb{C}^n$ is an irreducible representation of Fl_n and that $\operatorname{Sym}^k \mathbb{C}^n \cong V(k\omega_1)$. (You can use the Lemma mentioned above.)
- (c) Use our results from class regarding line bundles on flag varieties to show that the homogeneous coordinate ring of $\mathbb{P}(\mathbb{C}^n)$ inside $\mathbb{P}(\text{Sym}^k \mathbb{C}^n)$ is

$$\bigoplus_{r=0}^{\infty} (\operatorname{Sym}^{rk} \mathbb{C}^n)^*$$

(d) Deduce that the ideal of $\mathbb{P}(\mathbb{C}^n)$ in $\mathbb{P}(\operatorname{Sym}^k \mathbb{C}^n)$ is generated by

$$\frac{\binom{n+k-1}{k}\left\binom{n+k-1}{k}+1}{2}-\binom{n+2k-1}{2k}$$

quadratic equations.

- (e) In the case when n = 2, show that this simplifies to k(k-1)/2. Find these equations explicitly in coordinates.
- (f) Can you find the equations in coordinates for general n?
- (4) In this question, we consider the flag variety Fl(V) where V is an ndimensional vector space over a finite field k with q elements. This flag variety is a finite set.
 - (a) Using the decomposition of Fl(V) into Schubert cells, find |Fl(V)|. (Your answer should be a sum over the symmetric group.)
 - (b) For any m-dimensional vector space W over k, show that

$$|\mathbb{P}(W)| = \frac{q^m - 1}{q - 1}$$

We define $[m]_q := q^m - 1/q - 1$

(c) Use the previous question to show that

$$|Fl(V)| = [n]_q [n-1]_q \cdots [1]_q$$

This number is often called the q-analog of n!.

 $\mathbf{2}$