FLAG VARIETIES ASSIGNMENT 2 DUE FRIDAY NOVEMBER 11

- (1) Let $\underline{k} = (k_1, \ldots, k_m)$ be natural numbers with $k_1 + \cdots + k_m = n$. Recall the partial flag variety $Fl(\underline{k}, \mathbb{C}^n)$.
 - (a) Show that

$$T^*Fl(\underline{k},\mathbb{C}^n) = \{(X,V_{\bullet}) : V_{\bullet} \in Fl(\underline{k},V), X \in \mathcal{N}, XV_i \subseteq V_{i-1}\}$$

- (b) Show that $T^*Fl(\underline{k}, \mathbb{C}^n)$ is the resolution of a nilpotent orbit closure. Which one?
- (c) For any $X \in \mathcal{N}$, let $Fl(\underline{k})^X$ denote the fibre of $T^*Fl(\underline{k}, \mathbb{C}^n)$ over the point X. Give a bijection between the irreducible components of $Fl(\underline{k})^X$ and the set of semistandard Young tableaux of shape λ and content \underline{k} . (Having content \underline{k} means that the tableau contains k_1 1s, k_2 2s, ..., k_m ms.)
- (2) Consider the algebra $R = \mathbb{C}[x_1, \ldots, x_n]/\langle \mathbb{C}[x_1, \ldots, x_n]_+^{S_n} \rangle$, the quotient of the polynomial ring by the positive degree invariant symmetric polynomials. As discussed in class $R \cong H^*(Fl_n)$. Without using this geometric fact, prove that R is isomorphic to the regular representation $\mathbb{C}[S_n]$ of S_n . (Hint: one way to do this is to compute the character of both representations.)
- (3) Let λ be a partition of n and let X be the nilpotent Jordan form matrix given by λ . In class, for any row-strict tableau U of shape λ , we define a point $E^U_{\bullet} \in Fl_n^X$. Also, for any standard Young tableau U, we defined a subset $Y_U \subset Fl_n^X$.
 - (a) For any U, show that there exists a Schubert cell in Fl_n , such that Y_U is the intersection of Fl_n^X with this Schubert cell.
 - (b) Find all pairs U, V (where U is row-strict and V is standard) such that $E_{\bullet}^U \in \overline{Y_V}$.
 - (c) For each U standard, find an action of \mathbb{C}^{\times} on Fl_n^X such that Y_U is the attracting set E_{\bullet}^U for this action.
- (4) For each n, let C_n denote the set of crossingless matchings of n points on a line. There is a diagrammatic algebra, called the Temperley-Lieb algebra TL_n which has basis C_n^2 (see for example, the wikipedia page). The algebra TL_n usually depends on a parameter denoted δ . We will be concerned with the case $\delta = 2$. (Sometimes it is defined with a parameter $q; \delta = 2$ corresponds to q = 1.)
 - (a) Show that there is an algebra map $\mathbb{C}[S_n] \to TL_n$ given by $s_i \mapsto U_i 1$.
 - (b) Let V_n be a vector space with basis C_n . Show that there is a natural action of TL_n on V_n . By (a), this gives us an action of S_n on V_n . Show that V_n is the irreducible representation of S_n corresponding to the partition (n, n).
 - (c) Let $F_n = Fl_n^X$ denote the Springer fibre to the (n, n) nilpotent matrix X. Recall that for each $U \in C_n$, we have an irreducible component

 $\overline{Y_U} \subset F_n$, described by

 $\overline{Y_U} = \{V_{\bullet} \in Fl_n^X: X^{-k}V_i = V_j \text{ whenever region } i \text{ and region } j$

are connected in U and j = i + 2k }

Thus we get a vector space isomorphism $H_{top}(F_n) \cong V_n$ taking $[\overline{Y_U}]$ to U.

Recall the isomorphism $H(Z) = \mathbb{C}[S_n]$ and the action of H(Z) on $H_{top}(F_n)$. Prove by a direct computation that the isomorphism $H_{top}(F_n) \cong V_n$ is S_n -equivariant.