Symmetric bilinear forms

Joel Kamnitzer

March 14, 2011

1 Symmetric bilinear forms

We will now assume that the characteristic of our field is not 2 (so $1+1 \neq 0$).

1.1 Quadratic forms

Let H be a symmetric bilinear form on a vector space V. Then H gives us a function $Q: V \rightarrow \mathbb{F}$ defined by $Q(v)=H(v, v) . Q$ is called a quadratic form. We can recover H from Q via the equation

$$
H(v, w)=\frac{1}{2}(Q(v+w)-Q(v)-Q(w))
$$

Quadratic forms are actually quite familiar objects.
Proposition 1.1. Let $V=\mathbb{F}^{n}$. Let Q be a quadratic form on \mathbb{F}^{n}. Then $Q\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial in n variables where each term has degree 2. Conversely, every such polynomial is a quadratic form.

Proof. Let Q be a quadratic form. Then

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\left[x_{1} \cdots x_{n}\right] A\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

for some symmetric matrix A.
Expanding this out, we see that

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i, j \leq n} A_{i j} x_{i} x_{j}
$$

and so it is a polynomial with each term of degree 2 . Conversely, any polynomial of degree 2 can be written in this form.

Example 1.2. Consider the polynomial $x^{2}+4 x y+3 y^{2}$. This the quadratic form coming from the bilinear form H_{A} defined by the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$.

We can use this knowledge to understand the graph of solutions to $x^{2}+$ $4 x y+3 y^{2}=1$. Note that H_{A} has a diagonal matrix $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ with respect to the basis $(1,0),(-2,1)$. This shows that $Q(a(1,0)+b(-2,1))=a^{2}-b^{2}$. Thus the solutions of $x^{2}+4 x y+3 y^{2}=1$ are obtained from the solutions to $a^{2}-b^{2}=1$ by a linear transformation. Thus the graph is a hyperbola.

1.2 Diagonalization

As we saw before, the bilinear form is symmetric if and only if it is represented by a symmetric matrix. We now will consider the problem of finding a basis for which the matrix is diagonal. We say that a bilinear form is diagonalizable if there exists a basis for V for which H is represented by a diagonal matrix.

Lemma 1.3. Let H be a non-trivial bilinear form on a vector space V. Then there exists $v \in V$ such that $H(v, v) \neq 0$.

Proof. There exist $u, w \in V$ such that $H(u, w) \neq 0$. If $H(u, u) \neq 0$ or $H(w, w) \neq$ 0 , then we are done. So we assume that both u, w are isotropic. Let $v=u+w$. Then $H(v, v)=2 H(u, w) \neq 0$.

Theorem 1.4. Let H be a symmetric bilinear form on a vector space V. Then H is diagonalizable.

This means that there exists a basis v_{1}, \ldots, v_{n} for V for which $[H]_{v_{1}, \ldots, v_{n}}$ is diagonal, or equivalently that $H\left(v_{i}, v_{j}\right)=0$ if $i \neq j$.

Proof. We proceed by induction on the dimension of the vector space V. The base case is $\operatorname{dim} V=0$, which is immediate. Assume the result holds for all bilinear forms on vector spaces of dimension $n-1$ and let V be a vector space of dimension n.

If $H=0$, then we are already done. Assume $H \neq 0$, then by the Lemma we get $v \in V$ such that $H(v, v) \neq 0$.

Let $W=\operatorname{span}(v)^{\perp}$. Since v is not isotropic, $W \oplus \operatorname{span}(v)=V$. Since $\operatorname{dim} W=n-1$, the result holds for W. So pick a basis v_{1}, \ldots, v_{n-1} for W for which H_{W} is diagonal and then extend to a basis $v_{1}, \ldots, v_{n-1}, v$ for V. Since $v_{i} \in W, H\left(v, v_{i}\right)=0$ for $i=1, \ldots, n-1$. Thus the matrix for H is diagonal.

1.3 Diagonalization in the real case

For this section we will mostly work with real vector spaces. Recall that a symmetric bilinear form H on a real vector space V is called positive definite if $H(v, v)>0$ for all $v \in V, v \neq 0$. A postive-definite symmetric bilinear form is the same thing as an inner product on V.

Theorem 1.5. Let H be a symmetric bilinear form on a real vector space V. There exists a basis v_{1}, \ldots, v_{n} for V such that $[H]_{v_{1}, \ldots, v_{n}}$ is diagonal and all the entries are $1,-1$, or 0 .

We have already seen a special case of this theorem. Recall that if H is an inner product, then there is an orthonormal basis for H. This is the same as a basis for which the matrix for H consists of just 1s on the diagonal.

Proof. By the previous theorem, we can find a basis w_{1}, \ldots, w_{n} for V such that $H\left(w_{i}, w_{j}\right)=0$ for $i \neq j$. Let $a_{i}=H\left(w_{i}, w_{i}\right)$ for $i=1, \ldots, n$. Define

$$
v_{i}=\left\{\begin{array}{l}
\frac{1}{\sqrt{a_{i}}} w_{i}, \text { if } a_{i}>0 \tag{1}\\
\frac{1}{\sqrt{-a_{i}}} w_{i}, \text { if } a_{i}<0 \\
w_{i}, \text { if } a_{i}=0
\end{array}\right.
$$

Then $H\left(v_{i}, v_{i}\right)$ is either $1,-1$, or 0 depending on the three cases above. Also $H\left(v_{i}, v_{j}\right)=0$ for $i \neq j$ and so we have found the desired basis.

Corollary 1.6. Let Q be a quadratic form on a vector space V. There exists a basis v_{1}, \ldots, v_{n} for V such that the quadratic form is given by

$$
Q\left(x_{1} v_{1}+\cdots+x_{n} v_{n}\right)=x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2}
$$

Proof. Let H be a associated bilinear form. Pick a basis v_{1}, \ldots, v_{n} as in the theorem, ordered so that the diagonal entries in the matrix are 1 s then -1 s , then 0s. The result follows.

Given a symmetric bilinear form H on a real vector space V, pick a basis v_{1}, \ldots, v_{n} for V as above. Let p be the number of 1 s and q be the number of -1 s in the diagonal entries of the matrix. The following result is known (for some reason) as "Sylveter's Law of Inertia".

Theorem 1.7. The numbers p, q depend only on the bilinear form. (They do not depend on the choice of basis v_{1}, \ldots, v_{n}.)

To prove this result, we will begin with the following discussion which applies to symmetric bilinear forms over any field. Given a symmetric bilinear form H, we define its radical (sometimes also called kernel) to be

$$
\operatorname{rad}(H)=\{w \in V: H(v, w)=0 \text { for all } v \in V\}
$$

In other words, $\operatorname{rad}(H)=V^{\perp}$. Another way of thinking about this is to say that $\operatorname{rad}(H)=\operatorname{null}\left(H^{\#}\right)$.

Lemma 1.8. Let H be a symmetric bilinear form on a vector space V. Let v_{1}, \ldots, v_{n} be a basis for V and let $A=[H]_{v_{1}, \ldots, v_{n}}$. Then

$$
\operatorname{dim} \operatorname{rad}(H)=\operatorname{dim} V-\operatorname{rank}(A)
$$

Proof. Recall that A is actually the matrix for the linear map $H^{\#}$. Hence $\operatorname{rank}(A)=\operatorname{rank}\left(H^{\#}\right)$. So the result follows by the rank-nullity theorem for $H^{\#}$.

Proof of Theorem 1.7. The lemma shows us that $p+q$ is an invariant of H. So it suffices to show that p is independent of the basis.

Let

$$
\tilde{p}=\max \left(\operatorname{dim} W: W \text { is a subspace of } V \text { and }\left.H\right|_{W} \text { is positive definite }\right)
$$

Clearly, \tilde{p} is independent of the basis. We claim that $p=\tilde{p}$.
Assume that our basis v_{1}, \ldots, v_{n} is ordered so that

$$
\begin{aligned}
& H\left(v_{i}, v_{i}\right)=1 \text { for } i=1, \ldots p \\
& H\left(v_{i}, v_{i}\right)=-1 \text { for } i=p+1, \ldots, p+q, \text { and } \\
& H\left(v_{i}, v_{i}\right)=0 \text { for } i=p+q+1, \ldots, n
\end{aligned}
$$

Let $W=\operatorname{span}\left(v_{1}, \ldots, v_{p}\right)$. Then $\operatorname{dim} W=p$ and so $p \leq \tilde{p}$.
To see that $\tilde{p} \leq p$, let \tilde{W} be a subspace of V such that $\left.H\right|_{\tilde{W}}$ is positive definite and $\operatorname{dim} \tilde{W}=\tilde{p}$.

We claim that $\tilde{W} \cap \operatorname{span}\left(v_{p+1}, \ldots, v_{n}\right)=0$. Let $\underset{v}{\tilde{W}} \tilde{W} \cap \operatorname{span}\left(v_{p+1}, \ldots, v_{n}\right)$, $v \neq 0$. Then $H(v, v)>0$ by the definition of \tilde{W}. On the other hand, if $v \in \operatorname{span}\left(v_{p+1}, \ldots, v_{n}\right)$, then

$$
v=x_{p+1} v_{p+1}+\cdots+x_{n} v_{n}
$$

and so $H(v, v)=-x_{p+1}^{2}-\cdots-x_{p+q}^{2} \leq 0$. We get a contradiction. Hence $\tilde{W} \cap \operatorname{span}\left(v_{p+1}, \ldots, v_{n}\right)=0$.

This implies that

$$
\operatorname{dim} \tilde{W}+\operatorname{dim} \operatorname{span}\left(v_{p+1}, \ldots, v_{n}\right) \leq n
$$

and so $\tilde{p} \leq n-(n-p)=p$ as desired.
The pair (p, q) is called the signature of the bilinear form H. (Some authors use $p-q$ for the signature.)
Example 1.9. Consider the binear form on \mathbb{R}^{2} given by the matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. It has signature $(1,-1)$.

Example 1.10. In special relativity, symmetric bilinear forms of signature $(3,1)$ are used.

In the complex case, the theory simplifies considerably.
Theorem 1.11. Let H be a symmetric bilinear form on a complex vector space V. Then there exists a basis v_{1}, \ldots, v_{n} for V for which $[H]_{v_{1}, \ldots, v_{n}}$ is a diagonal matrix with only $1 s$ or $0 s$ on the diagonal. The number of $0 s$ is the dimension of the radical of H.

Proof. We follow the proof of Theorem 1.5. We start with a basis w_{1}, \ldots, w_{n} for which the matrix of H is diagonal. Then for each i with $H\left(w_{i}, w_{i}\right) \neq 0$, we choose a_{i} such that $a_{i}^{2}=\frac{1}{H\left(w_{i}, w_{i}\right)}$. Such a_{i} exists, since we are working with complex numbers. Then we set $v_{i}=a_{i} w_{i}$ as before

