MAT 347 Irreducibility criteria January 29, 2016

Let R be a UFD and let F be its field of fractions. Let $f(X) = a^n X^n + \ldots + \ldots + a_0 \in R[X]$.

Gauss' Lemma

• f(X) is reducible in $R[X] \iff f(X)$ reducible in F[X].

About roots

- f(X) has a degree-1 factor in F[X] iff it has a root in F.
- Assume deg f(X) = 2 or 3. If f has no roots in F, then it is irreducible in F[X].
- Assume that $\frac{r}{s}$ is a root of f(X) written as a fraction in R in lowest terms. Then $r|a_0$ and $s|a_n$.

Reduction

• Let $I \leq R$ be a proper ideal. Assume f(X) is monic. Let $\overline{f(X)} \in R/I[X]$ be the projected polynomial.

If $\overline{f(X)}$ is irreducible in R/I[X], then f(X) is irreducible in R[X].

Eisenstein criterion

• Let $P \leq R$ be a prime ideal. Assume f(X) is monic; $a_{n-1}, \ldots, a_0 \in P$; and $a_0 \notin P^2$. Then f(X) is irreducible in R[X].

Translation

• Let $a \in R$. The map $T_a : f(X) \in R[X] \to f(X + a) \in R[X]$ is an isomorphism.

Exercises

Prove whether each of the following polynomials is irreducible on the given polynomial ring. If they are not, factor them.

1.
$$f(X) = X^3 + 4X^2 + X - 6$$
 in $\mathbb{Q}[X]$.
2. $f(X) = X^4 + X^2 + 1$ in $\mathbb{Z}/2\mathbb{Z}[X]$.
3. $f(X) = X^4 + 1$ in $\mathbb{Z}[X]$
4. $f(X) = X^5 + 3X^4 + 30X^2 - 9X + 12$ in $\mathbb{Q}[X]$.
5. $f(X) = X^5 + 4X^3 - X + iX + 3 + 3i$ in $\mathbb{Z}[i][X]$.
6. $f(X) = X^3 + 6$ in $\mathbb{Z}/7\mathbb{Z}[X]$.
7. $f(X,Y) = X^3 + X^2Y + 3XY^2 + 5XY + 2Y$ in $\mathbb{Z}[X,Y]$.
8. $f(X) = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$ in $\mathbb{Z}[X]$.

Hints

- 1. Check all the candidates for roots.
- 2. Freshman's dream.
- 3. Apply Eisenstein to f(X + 1).
- 4. Eisenstein.
- 5. Eisenstein.
- 6. Look for roots.
- 7. Eistenstein.
- 8. Apply Eisenstein f(X + 1).