Geometric Fluíd Dynamics

Henan University, Sept - Oct 2021

Boris Khesin (Univ of Toronto)

Lecture 1

Tentative Plan:

I. Introducing the Euler equations. Its description as the geodesic flow.
II. Equations on the dual Lie algebra, Lie-Poisson structures, EulerArnold equations.
III. The Virasoro algebra and the KdV as an Euler equation.
IV. The Hamiltonian framework for hydrodynamics. Conservation laws for the Euler equations.
V. Geometry of Casimirs: helicity and enstrophies.
VI. Point vortices and vortex filaments.
VII. The Marsden-Weinstein symplectic structure on knots and vortex membranes.
VIII. Geometry of diffeomorphism groups and optimal mass transport.

Course website: www.math.toronto.edu/khesin/teaching/henan/geometricfluids21.html

Lecture 1 The hydrodynamic Euler equation. Its description as a geodesic flow.
μ
M, (,) - a Riemannian manifold μ-volume form.
The motion of an ideal (inviscid incompressible) fluid filling M is described by the Euler equation

$$
\left\{\begin{array}{l}
\partial_{t} v+\nabla_{v} v=-\nabla p \\
\operatorname{div} v=0 \quad(\text { and } v \| \partial M \text { if } \partial M \neq \varnothing)
\end{array}\right.
$$

on the velocity field v in M
Rms. In $\mathbb{R}^{n}: \frac{\partial v_{i}}{\partial t}+\sum v_{j} \frac{\partial v_{i}}{\partial x_{j}}=-\frac{\partial p}{\partial x_{i}}$ in Euclidean coordinates

Run 2. The pressure p is defined uniquely modulo an additive constant:

$$
\begin{aligned}
& \operatorname{div} \mid \quad \operatorname{div} \partial_{t}^{0} v+\operatorname{div} \nabla_{v} v=-\operatorname{div} \nabla p \text {, i.e. } \\
& \Delta p=-\operatorname{div} \nabla_{v} v-\text { Poisson eqqu } \\
&(n, \cdot) \mid\left(\partial_{t} v, n\right)+\left(\nabla_{v} v, n\right)=-(\nabla p, n), \text { i.e. } \\
& \frac{\partial p}{\partial n}=-\left(\nabla_{v} v, n\right)-\text { boundary } \\
& \text { condition }
\end{aligned}
$$

Thu (V. Arnold 1966) The hydrodynamic Euler equation is the equation of geodesics on the group Diff μ (M) of valume-preserving diffeomarphosus of M with respect to the right-invariant L^{2}-metric, given at the id $\in \operatorname{Doff}_{\mu}(M)$ by $E(v)=\frac{1}{2} \int(v, v) \mu$ for $v \in \operatorname{Vect}_{\mu}(M)$ the energy $E(v)=\frac{1}{2} \int_{\mu}(v, v) \mu$ for $v \in V_{\text {a }}$ div-frec vect. field on M.

A proof sketch for a flat mfd $\left(\mathbb{R}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$ with coord's $\{x\}$ Let $g(t, x)$ be the motion of the fluid on M (at any moment t a pt $x \in M$ goes to $g(t, x) \in M$, ie. $g(t, \cdot)$ is a diffeomorphism of M).
Then the fluid velocity is $\partial_{t} g(t, x)=v(t, g(t, x))$, (i.e. $v=\dot{g} \circ g^{-1}$). Then the fluid acceleration is

$$
\begin{aligned}
& \partial_{t t}^{2} g(t, x)=\partial_{t}\left(\partial_{t} g(t, x)\right)=\partial_{t} v(t, g(t, x)) \\
& =\left(\partial_{t} v+v \cdot \frac{\partial v}{\partial x}\right)(t, g(t, x))=-\nabla p(t, g(t, x)) \\
& \frac{\partial{ }^{\prime \prime}}{\partial t}
\end{aligned}
$$

Thus the Euler eq'n \leftrightarrows acceleration $\partial_{\text {equivalat }}^{2} g$ is a gradient $\partial_{t} v+v \cdot \frac{\partial v}{\partial x}=-\nabla p \quad$ equivalad field

Recall the Hodge decomposition:
$\operatorname{Vect}(M)=\operatorname{Div-free}$ © Gradient fields L^{2} fields
In other words, acceleration is L^{2}-orthogonal to divergence-free vector fields
\leftrightarrows this is the definition of a geodesic on a subnanifold (accel'n 1 subuf'd)

$$
Q E D
$$

Rm The L^{2}-metric on Diff (μ) is right-invariant:

$$
\begin{gathered}
\int_{M}(v(y), v(y)) \mu_{y}=\int_{M}(v(g(x)), v(g(x))) g^{x} \mu_{x} \\
\text { for } y=g(x) \quad\left(\operatorname{det}_{x} g\right) \mu_{x} \\
=\int_{M}\left(v(g(x)), v(g(x)) \mu_{x}\right.
\end{gathered}
$$

The Riemannian setting of general Euler equations Let G be a (finite- or infinite-dim) Lie group $g=\operatorname{lie}(G)$ its Lie algebra. Fix some inner
 product on of
(or inertia operator II: $a y \rightarrow g^{*}$)
Define energy $E(v)$ on $O y$

$$
\begin{aligned}
& E(v)=\frac{1}{2}\langle I v, v\rangle \\
& \quad\left(=H(m) \text { on } g^{*}\right.
\end{aligned}
$$

Define the ceft-invor.metric on G : for $m=\mathbb{I} v$)

$$
(u, v)_{g \in G}=\left(L_{g^{-1} \pm} u, L_{g^{-1}} v\right)_{i d}
$$

Consider the geodesic flow en G w.r.t this metric Pull back the velocity vector to the id $\in G$ Obtain an evolution equation $v=B(v)<$ some nonlinear
Definition: The geodesic equation $i v=B(v)$ operator on of is called the (generalized) Euler equation for the group G and inner product $($,$) , corresp. to the inertia opt II.$
Rm a) It can be reformulated as a Hamiltonian equation on of for the Hamill. function $H(m)=E(v)$ for $m=\mathbb{I} v$
b) The right -and left-invar. geodesic flows differ by \pm.

Application: Other groups and energies

Group	Metric	Equation
$S O(3)$	$\langle\omega, A \omega\rangle$	Euler top
$E(3)=S O(3) \ltimes \mathbb{R}^{3}$	quadratic forms	Kirchhoff equation for a body in a fluid
$S O(n)$	n-dimensional top	
$\operatorname{Diff}\left(S^{1}\right)$	L^{2}	Hanakov's metrics
$\operatorname{Diff}^{1}\left(S^{1}\right)$	$\dot{H}^{1 / 2}$	Constantin-Lax-Majda-type equation
Virasoro	L^{2}	KdV equation
Virasoro	H^{1}	Camassa-Holm equation
Virasoro $^{\operatorname{Diff}_{\mu}(M)}$	\dot{H}^{1}	Hunter-Saxton (or Dem) equation
$\operatorname{Diff}_{\mu}(M)$	L^{2}	Euler ideal fluid
$\operatorname{Symp}_{\omega}(M)$	H^{1}	averaged Euler flow
$\operatorname{Diff}^{2}(M)$	L^{2}	symplectic fluid
$\left.\operatorname{Diff}_{\mu}(M) \ltimes \operatorname{Vect}{ }_{\mu}(M)\right)$	L^{2}	EPDiff equation
$C^{\infty}\left(S^{1}, S O(3)\right)$	$L^{2} \oplus L^{2}$	magnetohydrodynamics
	H^{-1}	Heisenberg magnetic chain

Rm These ave Hamiltonian systems on of* with the quadratic Hamiltonian = kinetic energy for the Lie-Pisson bracket.

Rm-preview: Rivemannian geometry ©Symplectic geometry

Namely, geodesics = curves in

$$
T_{1}=\left\{(x, \xi) \in T \quad \frac{\left.|\xi|^{2}=1\right\} \text { on } N}{2}\right.
$$

minimizing the action $f^{\prime} l \mathcal{L}=\int_{0}^{1} \frac{|\dot{x}|^{2}}{2} d t$ When rewritten on $T^{* N}$ (in Hamiltonian form) they ave identified by metric on N (ie by II) $T N \longleftrightarrow T^{*} N$ with characteristic curves
in $T_{1}^{*} N=\left\{(x, p) \left\lvert\, \frac{|p|^{2}}{2}=1\right.\right\}$ (solutions of the Hamill. eq' n)
For $N=G$ and left in ${ }^{2} U$. metric on $T G$ the curves ave determined by the energy on get or by II: Of $\rightarrow g^{k}$.

Reminder on Poisson structures
Def. A Poisson structure (or P. bracket) $\}$ on a nufd M is a bilinear operation on f^{\prime} on $M,\{ \}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ which a) is skew-symmetric $\{f, g\}=-\{f, g\}$
b) satisfies the Liebniz identity $\{f, g l\}=\{f, g\} h+\{f, h\} g$
c) satisfies the Jacob; identity $\sum_{S f, g, h}\{\{f, g\}, h\}=0 \quad \forall f, g, h \in C^{\infty}(m)$
$R m$ a) \&c) \Rightarrow J Lie algebra strive on C^{∞} (a)
b) everything is determined by linear jets $\forall p \in M$.
$\{f, \cdot\}$ is a differentiation of $C^{\circ}(M)$
$\underline{\Sigma x}$ a) $\mathbb{R}^{2}, \quad\{f, g\}=\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x} \quad$ (nothing is going on
b) \mathbb{R}^{3}, - - the same bracket (in the z-direction)

Def A Poisson bracket on M defines an operator $n: C_{\psi}^{\infty}(\mu) \rightarrow \operatorname{vect}(M)$ such that $\{H, f\}=L_{\xi=1} f$ H
$H$$\sum_{\text {Hamiltonian for all test }} f^{\prime} s f \in C^{\infty}(M)$ function vector field
Ex $\cdot \mathbb{R}^{2},\{H, f\}=\frac{\partial H}{\partial x} \frac{\partial f}{\partial y}-\frac{\partial H}{\partial y} \frac{\partial f}{\partial x}=L_{i_{H}} f$, where

$$
\xi_{H}=-\frac{\partial H}{\partial y} \frac{\partial}{\partial x}+\frac{\partial H}{\partial x} \frac{\partial}{\partial y}=\left(-\frac{\partial H}{\partial y}, \frac{\partial H}{\partial x}\right)
$$

Hamiltonian are $\left\{\begin{array}{l}\dot{x}=-\frac{\partial H}{\partial y} \\ \dot{y}=\frac{\partial H}{\partial x}\end{array}\right.$

