Geometric Fluíd Dynamics

Henan University, Sept - Oct 2021

Boris Khesin (Univ of Toronto)

Lecture 2

Reminder on Poisson structures
Def. A Poisson structure (or P. bracket) $\}$ on a ned M is a bilinear operation on f^{\prime} son $M,\{ \}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ which a) is skew-symmetric $\{f, g\}=-\{f, 9\}$
b) satisfies the Liebniz identity $\{f, g l\}=\{f, 9\} h+\{f, h\} g$
c) satisfies the Jacobi identity $\sum_{S i, g, h}\{\{f, g\}, h\}=0 \quad \forall f, g, h \in C(m)$
$R \mathrm{Rm}$ a) $\& C) \Rightarrow$ I Lie algebra strive on $c^{\infty}(u)$
b) everything is determined by linear jets $\forall p \in M$.
$\{f, \cdot\}$ is a differentiation of $C^{\circ}(M)$
$\underline{\Sigma x}$ a) $\mathbb{R}^{2}, \quad\{f, g\}=\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x}$ (nothing is going on
b) \mathbb{R}^{3}, - - - the same bracket ((in the z-direction)

Def. A Poisson bracket on M defines an operator $n: C_{*}^{\infty}(M) \rightarrow \operatorname{vect}(M)$ such that $\{H, f\}=L_{\xi H} f$ $\stackrel{\xi^{H}}{H} \longmapsto H_{\text {Hationion }}$ for all test $f^{\prime} s f \in C^{\infty}(M)$ function vector field
Ex. $\mathbb{R}^{2},\{H, f\}=\frac{\partial H}{\partial x} \frac{\partial f}{\partial y}-\frac{\partial H}{\partial y} \frac{\partial f}{\partial x}=L_{z_{H} f}$, where

$$
\xi_{H}=-\frac{\partial H}{\partial y} \frac{\partial}{\partial x}+\frac{\partial H}{\partial x} \frac{\partial}{\partial y}=\left(-\frac{\partial H}{\partial y}, \frac{\partial H}{\partial x}\right)
$$

Hamiltonian are
equations $\left\{\begin{array}{l}\dot{x}=-\frac{\partial H}{\partial y} \\ \dot{y}=\frac{\partial H}{\partial x}\end{array}\right.$

Rm: A Poisson structure can be defined by a bivector II

$$
\{f, g\}(m)=\langle\Pi, d f \wedge d g\rangle
$$

(Axioms of a Poisson strive \Rightarrow conditions on Π : Schouten) bracket $[\Pi, \Pi]=0$

- Equivalently, \{\} defines an operator
$\Pi: T^{*} M \rightarrow T M$
$d H \mapsto \xi_{H}$
Then $\operatorname{Im} \Pi$ is a plane distribution on M, a subbundle in $T M$ Conditions on $\Pi \Leftrightarrow$ This is an integrable distribution \Rightarrow integral submanifolds for M in M (frobenius the)
- 2 pts in M are equivalent if there is a path joining them and Hamiltonian at any pt on the way Integral submfd's \leftrightharpoons equivalence cases for Π

Thu (A. Weinstein 1982) For any Poisson manifold its equivalence classes have natural symplectic structures, ie. any Poisson nufd is (locally)fibered by symylectic leaves. (Moreover, locally there is a splitting into a sympl. mys and a Poisson mod of rick 0 at a pt...)
Def A manifold $\left(M^{2 n}, w\right)$ is called a symplectic man fold if M is equipped with a closed nondegenerate 2 -form ω ($d \omega=0$ and $\omega^{n}:=\omega \wedge \ldots n \omega \neq 0$ on μ)
$\Sigma x{ }^{\prime}\left(\mathbb{R}^{2}, d x \wedge d y\right)$
b) (S^{2}, area form)

c) S^{4} is NOT a symplectic niff:

Def A Casiniir function for $\}$ on M is a function h such that $\{h, f\} \equiv 0 \quad \forall f \in C^{\infty}(M)$
$\Sigma x \cdot \mathbb{R}^{2},\{f, g\}=\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x}$
Casimirs ave constants only

- \mathbb{R}^{3}, same $\}$, symplectic leaves are planes $\{z=$ cont $\}$
 casrmirs are arbitrary functions $h(z)$ They ave constants on symplectic leaves All Hamiltonian fields are horizontal:

$$
\xi_{H}=\left(-\frac{\partial H}{\partial y}, \frac{\partial H}{\partial x}, 0\right)
$$

Note: If H is a Casimir, $\xi_{H}=0$.

Lecture 2 The Lie-Poisson structures. The Euler-Arnold equations.
Let G be a Lie group, $O=L_{i e}(G)$ ifs Lie algebra
Def on g^{*} there is a linear Poisson bracket (called the Lie-Poisson, Kirillor-Kostant, etc.), ie. the grivation $\left\{Y_{L P}: C^{\infty}\left(O y^{*}\right) \times C^{\infty}\left(g^{*}\right) \rightarrow C^{\infty}\left(y^{*}\right)\right.$ given by

$$
\begin{aligned}
& g^{*}<0 \cdot \cdot m \\
& \{f, g\}_{L P}(m)_{n}:=\left\langle\left[\left.\left.d f\right|_{m} d g\right|_{m}\right], m\right\rangle \\
& c^{\infty}\left(g^{*}\right) g^{*} \text { of } \\
& \text { of } 1 \longrightarrow{ }_{0} \text { dst }_{\text {dm }}
\end{aligned}
$$

Prop-def'n. The Euler-A2nold (or Euler-Paisson) equation for a Hamiltonian function H with respect to $\left\}_{L P}\right.$ is given by
Pf \forall test $f^{\prime} n g \in C^{\infty}\left(O^{*}\right)$

$$
\dot{m}=a d^{*} m
$$

$$
\{H, g\}_{L P}(m)=\langle[d H, d g], m\rangle=:\left\langle a d_{d H} d g, m\right\rangle
$$

$=\left\langle d g, a d_{d H}^{*} m\right\rangle=L_{\xi H} g(m)$, where $\exists 2$ def's ad

$$
\xi_{H}=a d_{\left.d H\right|_{m} ^{*}}^{m}
$$

Rm Recall: for any Lie algebra of, $[u, v]=a d u v$, while the coadjoint operator on y^{*} is defined by $\langle[u, v], l\rangle=:\left\langle a \lambda_{u} v, l_{i^{*}}\right\rangle\left\langle v, \operatorname{ad}{ }^{*} l\right\rangle \quad \forall l \in g^{k}$

Ex. $G=G L(n) \ni T$, wondeg. $n \times n$ matrices $(\operatorname{det} T \neq 0)$ $g=g l(n)$, all $n \times n$ matrices
Group adjoint action = change of coord's, conjugation:
$\forall T \in G L(n) \quad \forall V \in g l(n) \quad A d_{T} V=T V T^{-1}$
Indeed, let $V: x \mapsto V x$, change cord's $y=T x$
$T^{-1} y \mapsto V T^{-1} y$

$$
x=T^{-1} y
$$

$y \mapsto T V T^{-1} y \Rightarrow A d_{\Gamma} V=T V T^{-1}$
For an infinitesimal transf'n $T=I+\varepsilon U$, define ad $_{u}: o g \rightarrow o f$ by $A d_{(I+\varepsilon v)} \cdot=I+\varepsilon \cdot a d_{U} v^{\circ}+U\left(\varepsilon^{2}\right)$ Namely, $A d_{I+\varepsilon U} V=(I+\varepsilon U) V(I+\varepsilon U)^{-1}=V+\varepsilon(U V-V U)$
Thus ad $V=U V-V U=[U, V]$

Ex a) $G=S O$ (3) - orthog 3×3 matrices $g=s 0(3)-\Delta k e w$-sym.

$$
j o(3) \ni\left(\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right) \simeq\left(\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right) \in \mathbb{R}^{3}
$$

Matrix commutator ~ vector product group its \leftrightarrows rotations \leq spheres coadjoint orbits \leftrightharpoons of vectors \leftrightarrows centered at 0
b) $G=S L(2, R)$ - matrices with $\operatorname{det}=1$

$$
O Y=s l(2)=\left\{\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)\right\}-\begin{aligned}
& \text {-traceless } \\
& 2 \times 2 \text { matrices }
\end{aligned}
$$

Matrix conjugation $\Rightarrow \Delta=-\left(a^{2}+b c\right)=$ const group coadjoint \leftrightharpoons hyperboloids, orbits
cone,
the origin

Cor 1 If $H(m):=\frac{1}{2}\left\langle\Pi^{-1} m, m\right\rangle$, a quadratic form for a noudegen. II: of $\rightarrow \mathrm{og}^{-1}$
 of $<\cdot \cdot \mathbb{I}^{-1} m$

Then $\left.d H\right|_{m}=I^{-1} m$ and the Euler-Aruold equation is

$$
\dot{m}=a d_{\mathbb{I}^{-1} m}^{*} m
$$

Cor 2 symplectic leaves of $\left\}_{L P}\right.$ bracket on y^{*} are coadjoint orbits $\cup_{m}=A d_{G}^{*} m$

Indeed, all ξ_{H} for all f's H have the form $\xi_{H}(m)=a d_{d H}^{*} m$, ie they are infinitesimal shifts of m by
Om the group coadjoint oper's $A d_{G}^{*}$,

$$
a d_{d H}^{*} \in T_{m}\left(A d_{G}^{*} \underset{{ }_{\because}^{*} O_{m}}{m}\right.
$$

Thu (V .Arnold)
The Euler equation $\dot{m}=\mathrm{ad}_{\mathbb{I}^{-1} m}^{*} m$ on of ${ }^{*}$ and the geodesic equation $i v=B(v)$ on $a y$ are related by the inertia operator II: $g \rightarrow g^{*}$ $v \mapsto m=\mathbb{I} v$
"Pf" is the relation of geodesics for $L=\frac{v^{2}}{2}$ on $T G$ and Hamiltonian trajectories
G $H=\frac{p^{2}}{2}$ on $T^{*} G$.

Example: Euler top
Consider the group $G=S O(3)$ and its Lie algebra $g=50(3)$ so $(3) \Rightarrow \omega$-angular velocity in the body
The energy $E(\omega)=\frac{1}{2}\langle\omega, \Pi \omega\rangle=\frac{1}{2}\left\langle\Pi^{-1} m, m\right\rangle=H(m)$, where $m=I I \omega \in s o(3)$ is angular momentum in the body,

$$
I=\left(\begin{array}{lll}
I_{1} & & 0 \\
0^{I_{2}} & I_{3}
\end{array}\right), \begin{aligned}
& I: s o(3) \rightarrow s o(3)^{*} \\
& \\
& \\
& \\
& I
\end{aligned}
$$

The Euler top equation is $\dot{m}=a d_{I^{-1} m}^{*} m=m \times \mathbb{I}^{-1} m$

$$
\Leftrightarrow \dot{m}_{1}=\frac{I_{2}-I_{3}}{I_{2} I_{3}} m_{2} m_{3}, \dot{m}_{2}=\frac{I_{3}-I_{1}}{I_{3} I_{1}} m_{3} m_{1}, \dot{m}_{3}=\frac{I_{1}-I_{2}}{I_{1} I_{2}} m_{1} m_{2}
$$

for the angular momentum, or for the angular velocity

$$
I_{1} \dot{\omega}_{1}=\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}, I_{2} \dot{\omega}_{2}=\ldots, I_{3} \dot{\omega}_{3}=\ldots
$$

Hamiltonian picture: symplectic leaves are solueves $\left\{|m|^{2}=\right.$ cons $\} \subset \mathbb{R}^{3}=s 0(3)^{*}$ The Hamiltonian $H(m)=\frac{1}{2}\left\langle\mathbb{I}^{-1} m, m\right\rangle$, its levels are ellipsoids trajectories C intersections of \cap ellipsoids spheres $|\mathrm{m}|^{2}=$ cons $H(m)=$ cons

(d)

(b)

(c)

(e)

6 stationary rotations:

Trajectories on a phase sphere for a freely rotating rigid body for $I_{1}<I_{2}<I_{3}$. Points on the x-axis and z-axis are centres (stable). Points on the y-axis are saddle points (unstable) [image from Bender and Orszag (1978)].

4 stable (centers)
2 unstable (saddles)

- The Dzhanibekov Effect
- The Tennis Racket Theorem
- The Intermediate Axis Theorem

Note: a trajectory close to a saddle pt spends most of the time near two saddles and switches fast between the two.

Higher-dimensional Euler Lops
In $n \geqslant 4$ dimensions a rigid body (with configuration space $S O(n)$) is described as an evolution of its angular velocity $\omega \in s 0(n)$, skew-sym $n \times n$ matrix. Its energy is $E(\omega)=-\operatorname{tr}(\omega D \omega)$, where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ and $d_{k}=\frac{1}{2} \int_{\text {body }} \rho(x) x_{k}^{2} d x$ for density ρ The inertia operator II: so $(n)^{\text {body }} \rightarrow$ so $(n)^{*}$ is very special: $\quad \omega \longmapsto D \omega+\omega D$ Thu (Mishchenko $n=4$, Manakor $\forall n \geqslant 4$) The Euler equation of an n-dim rigid body $\dot{n}=a d_{\pi^{-1} m}^{*} m$ (here $\dot{m}=[\omega, m]$ for $m=D \omega+\omega D$) is a completely integrable system on so (n)*.

Rm Already for $n=4$ stability of steady rotations depend not only on the "semiaxis length", but also on the absolute value $|\omega|$ of the angular velocity.
A. Izosimov associated to a given rotation a "parabolic diagram" (explicitly constructed several parabolas and vertical lines of total degree n)

Thu (Izosimov 2013) A rotation of an n-dim rigid body is stable of all intersections of the parabolas (and lines) are real and belong to the upper half-plane.

