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Reminder on Poisson structures

Def . A Poisson structure (or P. bracket) {} on a mfd M
is a bilinear operation on f 'S on Me

, { } : c-(m) ✗CHM) →CHM)
which a) is skew -symmetric { f. g) = - { f. 9}
b) satisfies the Liedoniz identity {f.ghy = { f.93h + {f, h}g
e) satisfies the Jacobi identity z-ggf.gg,hy=o ftp.h-CFM)G f

, g, hRm a) & c) ⇒ 7 Lie algebra strive on C
•Car )

b) everything is determined by linear jets ltp EM .

{f. • 3 is a differentiation of c-CM)

⇐ a) pi
,
{f. 93 = 8J -¥ 8¥

b) IRS
,

- a- -
the same bracket

( nothing isgoing on
in the -2- direction)



Def
,

A Poisson bracket on M defines an operator
17 : c- cm) → Vectcm) such that {1-1,7}--1 }µf

it to ¥3k
Hamiltonian Hamiltonian for all test f's ferny
function vector field

E-x.IR?fH,f3--o%8f-y-0H-oy?f-x--Lz,,f.uheue3n---8T¥ -18¥ =L-8¥, 8¥)
Hamiltonian
equations

are { E-Ifj=¥



Rm_ • A Poisson structure can be defined by a bivector ☐
{f , g) (m) = < 17 , dfadg >
( Axioms of a Poisson str 're ⇒ conditions

on 17 : Schouten )
bracket [ N , R]

=0

• Equivalently , { } defines an operator
N : 1-* M → TM

DH ↳ 7h
Then Im 17 is a plane distribution on M , a

subbundle inTM

conditions on a⇐> this is an integrable distribution
(Frobenius thou)

⇒ F integral submanifolds for 17 in M
• 2 pts in M are equivalent ifthere is a path joining

them

and Hamiltonian at any pt on the way€EÉÑ Integral submfd's s equivalence classes
Intl for 17



Tim (A.Weinstein 1982) For any Poisson manifold
its equivalence classes have natural symplectic structures ,
i.e. any Poisson mfd is (locally)fibered by symplectic

1 ,

leaves
. . ( moreover , locally there is a splitting into a

sympl . mfd and a Poisson mfd of rock 0 at a pt - . - )

Def A manifold (MYw) is called a symplectic manifold if
M is equipped with a closed nondegenerate 2- form W

( dw=0 and W
"

: = w a
. . .

nw -1-0 on M) 5
"I

⇐ a) CR? dxady) b) (s? area form)
e) $4 is NOT a symplectic mfd : .

( of 3- wary54 ⇒ we defines [we] c-H
"(SG) ⇒ Ew] c- 1-1%9))¥ contradiction # I



Def A Casimir function for {} on M is

a function h suchthat {h ,f 3¥ O FfE (M)

E. • R? {f. g3=¥¥ -¥ 8¥
Casimir are constants only

• IR? same { ] symplectic leaves are planes {
2- = coast)

"

casrmirs are arbitrary functions hE)
They are constants on symplectic leaves
All Hamiltonian fields are horizontal :
}H=f%y , 8¥ , O )

Note : If It is a Casimir
. }n=O .



The Lie-Poisson structures.
The Euler-Arnold equations.

Lecture 2

Let G be a Lie group , g = Lie (G) its Lie algebra
Def_ On G

* there is a linear Poisson bracket
(called the Lie - Poisson

,
Kirillov- Kostant

,
etc

.)
,
i.e.

the operation { 3Lp :c•(g*) ✗ c-Cgg → c-Coyt)
given by

g*y
{fig 3,5m£ :-< [dflmdgln] , m >a
EÉg*jG* "

g
"

gxgz.EE



Prop-idef.hn .
The Euler- Arnold (or Euler- Poisson)

equation for a Hamiltonian function H with
respect to { }<p is given by in = ad

's
m

PI V-testf.in get(g*) dtllm

{H ,g)Lp (m) = < EDH , dg] , m> = :< addndg , m >

F- < dg , ad*dµm > = ↳ +,
gon) , where

3- 2 def's ad* qµ=ad* m QED
with -1 dttlm
Rm Recall : for any Lie algebra g. [u.ir] = adult , while
the •adjoint operator on g* is defined by
< [air] , l >= :< adieu,

l > = < v. ad
* e > fee G*

☒ "
g.
* of "

g*



EI
.

G= GUNZ't
, nondeg .

nxn matrices (deft -40)

G--glint ,
all nxn matrices

Group adjoint action = change of Codd 's, conjugation :
V-TC-GLCNIV-TE-gllnJAd.tk 'T -VE '

Indeed
,
let _V : ✗↳ Tx

, change coord 's y=Tx
Fig ↳ Tt'T'y ✗ = y

y -TTT'y ⇒ Ad ='T V 'T '

For an infinitesimal transf'nT=I +ett , define
adu : G → G by Ad e.↳

•
= It e. ad • +047

Namely , Adt-e-u-V-CI-e-v-VCI-EUJ-1-T-ECUV-VUJ-T.TKYI - Ett) +0 (E)Thus adj-V-E-V-T-V-EV.tt]



EI a) G = SO (3) - orthog. 3×3 matrices
g =so (3) -skew - sym .

sooo af:-O
"
-%)- CE;) c- Pi- Wz W ,
0

Matrix commutator -~ vector product
group
coadjoint orbits E.

rotations
of vectors 5

spheres
centered at 0

b) G = SL (2 ,
R) - matrices with def =L

g = se (2) = { (
a &

c-a)} - traceless2×2 niatnces

Matrix conjugation ⇒ D= - ca't bc) = const

group coadjoint g hyperboloids ,orbits cone
,

the origin



Cord If Hcm)÷I<TI'm ,m3 , a quadratic form, for
a nonDegen . I : ay → g-

1

GEE
[I - inertia operator

then dtt /
m
= I-1m and

the Euler
-
Arnold equation is9

in = ad
*

m
I'm



Corf symplectic leaves of { }Lp- bracket on G*
are coadjoint orbits 0m=Ad%m

m•fqµ Indeed
,
all 3+1 for all f's H have

the form 3 +1cm)=ad¥µm ,
i.e. they

are infinitesimal shifts of m by
0m the group coadjoint open 's Ad} ,

ad*dµETm(Adg*m )
"
"0m



Thin ( V. Arnold)
the Euler equation in =ad¥-gum on of *
and the geodesic equation Ñ=B (v) onaf

are related by theg€É inertia operator I :g→g*
vi→m= Iv

¥÷ÉÉ÷¥÷÷:÷÷:÷geodesics for L = outG

for H=tÉ on T*G
.



Example:     Euler top
Consider the group G= so (3) and its lie algebra g-- so(3)
so G) 2- w - angular velocity in the body
The energy Ecw) = Izzw,Iw > ={ <I

- '
m
,
m > = Hlm),

where m =Iw c- so (3) is angular momentum inthe body,

I= ( Iz ) , I : so B) → so (3)
*

I : W te m = IW

the Euler top equation is in =ad¥-1mm = m ✗ I'm



⇐ in,=I¥¥÷ mins ,ñz= min , ,
in 5- mine

for the angular momentum ,
or for the angular velocity
I,Ñn= (Iz - Iz) wzwz , IÑz= . . . >

IzÑ5 . . .

Hamiltonianpoiture: symplectic leaves
are spheres { Im F- const} c R'=so (3)*
The Hamiltonian Hcm j=z< I-im.my ,

its levels are

ellipsoids
trajectories • intersections of ellipsoids

spheres
.

1m¥ const
^

Hcm) = coast





6 stationary rotations :
4 stable (centers)
2 unstable ( saddles)

Note : a trajectory close
to a saddle pt spends
most of the time near
two saddles and switches
fast between the two .





Higher-dimensional Euler tops
In n > 4 dimensions a rigid body (with configuration
space $0(n)) is described as an evolution of its
angular velocity we so (n ) , skew - sym nxn matrix

.

Its energy is F- (w) =- tr(WDW)
,

where

D= diag Cdi , . . > dn) and die{ fpcxjxnedx for densityat ✗e- body
bodyThe inertia operator I : so (n) → soon)*

is very special : w →Dw + WD

Thin (Mishchenko n=4, Nanakov th> 4) The Euler
equation of an n - dim rigid body in =ad¥-1mm
(here in =[w, m] for m=DwtwD) is a completely
integrable system on socn) ?



Rm_ Already for n= 4 stability of steady rotations
depend not only on the "semiaxis length ", but also
on the absolute value 1.WI of the angular velocity .

A. Izosimov associated to a given
rotation a "parabolic diagram "

(explicitly constructed several parabolasand vertical lines of total degree n)

thm (Izosimov 20 B) A rotation of an n -dim

body is stable iff all intersections of
the parabolas (and lines) are real and belong
to the upper half-plane .


