## Geometric Fluíd Dynamics

## Henan University, Sept - Oct 2021

Boris Khesin (Univ of Toronto)

Leckure 4

## Tentative Plan:

I. Introducing the Euler equations. Its description as the geodesic flow.
II. Equations on the dual Lie algebra, Lie-Poisson structures, EulerArnold equations.
III. The Virasoro algebra and the KdV as an Euler equation.
IV. The Hamiltonian framework for hydrodynamics. Conservation laws for the Euler equations.
V. Geometry of Casimirs: helicity and enstrophies.
VI. Point vortices and vortex filaments.
VII. The Marsden-Weinstein symplectic structure on knots and vortex membranes.
VIII. Geometry of diffeomorphism groups and optimal mass transport.

Lecture 4: The Hamiltonian framework for hydrodynamics. Conservation laws.
M, $\mu$
Let $M,($,$) be a Riemannian mfd,$ $\mu$ '-volume form
Consider the Lie group
$G=\operatorname{Diff}_{\mu}(\mu)=\left\{\varphi \in \operatorname{Diff}_{\text {if }}(\mu) \mid \varphi^{*} \mu=\mu\right\}$ of volume preserving diffeom's. Its $L$ Lie algebra is

$$
O y=\operatorname{Lie}(G)=\operatorname{Vect}_{\mu}(M)=\left\{v \in \operatorname{Vect} \mid L_{v} \mu=0 \text { and } v \| \partial M\right\}
$$ divergence -free vector fields tangent to $\partial M$.

Thu The (regular part of the) dual space of* is naturally identified with

$$
g^{*} \simeq \Omega^{1}(\mu) / d \Omega^{0}(M) \ni[u]=\left\{u+d f \mid \forall f \in C^{\infty}(M)\right\}
$$

(all 1 -forms modulo exact) $A$ coset of 1 -forms
The pairing is

$$
\langle[u], v\rangle:=\int_{M}(i v u) \mu
$$

The Lie algebra action is $a d_{v} w=L_{v} w$
The coadjoint action is $\uparrow$ II

$$
\operatorname{ad}_{v}^{*}[u]=-L_{v}[u]
$$

 $g=$ Vector. $\qquad$ aiv-bee v. fields $\%$ $\operatorname{div} v=0$
"Pf" The pairing of 1-forms and vect. fields (i.e. $\Omega^{1} \& V$ Vd $(M)$ ). is nondegenerate, while $\left\langle d \Omega^{0}, \operatorname{Vect} \mu(M)\right\rangle=0$, since

$$
\langle d f, v\rangle=\int_{M}\left(i_{v} d f\right) \mu=\int_{M}\left(L_{v^{\prime}}\right) \mu=-\int_{M} f \cdot L_{v} \mu=0
$$

Exer check for $M$ with boundary
The group adjoint and coadjoint action is geometric, ie. changing coordinates in vect. fields and 1 -forms by a volume-preserving diffeo'm:

$$
\begin{aligned}
& A d_{\varphi} v=\varphi_{*} v \\
& \operatorname{Ad}^{*}[u]=\varphi^{*}[u]
\end{aligned}
$$

while the pairing is invariant (change coord's in integral). QED.

Rum The inertia operator corresponds to the L -energy:

$$
\begin{aligned}
& E(v)=\frac{1}{2}\langle v, \mathbb{I} v\rangle=\frac{1}{2} \int_{\mu}(v, v) \mu \text {. Hence } \\
& \text { II: vect } \rightarrow \Omega^{1} / d \Omega^{0}, \text { i.e. } \Omega^{1} \ni v^{b}(w)=(v, w) \\
& v \\
& v \mapsto\left[v^{b}\right] \quad \forall w \in \operatorname{Vect}(\mu)
\end{aligned}
$$

Here $v \rightarrow V^{b}$ is the Riemannian metric isomorphism. It sends a div-free vect. field to a co-dosed 1 -form $v^{b}$. (Indeed, $\delta v^{b}=* d i_{v \mu}=0$ )
The Hanniltonian function on the dual space is $H([u])=\frac{1}{2}\langle[u],[u]\rangle=E(v)$ for $u=v^{b}$

Then the Euler-Arnold equation, i.e the Hamiltonian eq'n for $H([u])$ and the Lie-Poisson structure on Sect $\mu_{\mu}^{*}$ is

$$
\begin{array}{r}
\dot{m}=a d_{\mathbb{I}^{-1} m}^{*} m \text {, i.e. } \partial_{t}[u]=-L_{v}[u] \text { for } v^{b}=u \\
\text { Here }[u] \in \Omega^{1} / d \Omega^{0}(M)
\end{array}
$$

For a representative 1 -form $u \in \Omega^{1}$, $\partial_{t} u=-L_{v} u+d f$ on $\partial_{t} u+L_{v} u=d f \leadsto$ the Euler equation $\partial_{t} v+\nabla_{v} v=-\nabla p$, once we use the Riem.metric identification

Exercise: Prove the identity

$$
L_{v}\left(v^{b}\right)=\left(\nabla_{v} v\right)^{b}+\frac{1}{2} d(v, v) .
$$

It implies that the metric identification sends

$$
\begin{array}{r}
\partial_{t} u+L_{v} u=d f \text { for } u=v^{b} \text { to } \partial_{t} v+\nabla_{v} v=-\nabla p \\
\text { for } p=\frac{1}{2}(v, v)-f
\end{array}
$$

A variation: Infinite conductivity equation
Def The equation of infinite conductivity in $\mathbb{R}^{3}$ is $\left\{\begin{array}{l}\partial_{t} v+\nabla_{v} v+v \times B=-\nabla p \\ \operatorname{div} v=0\end{array}\right.$ where $B$ is a fixed magnetic field, $v$-velocity of the electrongas

Prop This eqn is equivalent to the Hamill. eq'n on $O^{*}=\Omega 1 / d S^{0}\left(R^{3}\right) \quad \partial_{t}[u]=-L_{v}[u+\alpha]$, where $u=v^{b},[u] \in \Omega^{1} / \alpha \Omega^{\circ}$ and $\alpha \in \Omega^{1}\left(\mathbb{R}^{3}\right)$ is defined by $d \alpha=-i_{B} \mu$ modulo $d f \in d \Omega^{\circ}$.
Pf-exer: Prove the relation of $v \times B$ and $L_{v} \alpha$.
Rm It is equivalent to $\partial_{t}[u+\alpha]=-L_{v}[u+\alpha]$, ie. it is Hamiltonian for $\left\}_{L p}\right.$ on $g^{\alpha}$ and the "shifted" Hamill. fin $H([u])=\frac{1}{2} \int_{\mathbb{R}^{3}}([u+\alpha],[u+\alpha]) \mu$.

Generalizations: Semi-direct product groups
Ex. $E(3)=S O(3) \ltimes \mathbb{R}^{3}$, motions of Euclidean $\mathbb{R}^{3}$ Composition of maps $x \mapsto A x+b$ gives the group product $\left(A_{2}, b_{2}\right) \cdot\left(A_{1}, b_{1}\right)=\left(A_{2} A_{1}, A_{2} b_{1}+b_{2}\right)$
Thu (Vishik-Dolihansty 1978) The Euler eq'n for $e(3)^{k}$ and a quadratic Hamiltonian $H=\frac{1}{2}\left(\sum a_{i} m_{i}^{2}+\sum c_{i j} p_{i} p_{j}\right)$ gives the Kirchheft equations $\left.+\sum b_{i j}\left(p_{i} m_{j}+p_{j} m_{i}\right)\right)$

$$
\left\{\begin{array}{l}
\dot{m}=m \times \omega+p \times u \\
\dot{p}=p \times \omega
\end{array} \text { for }(p, m) \in e^{*}(s)\right.
$$

Similarly, for the magnetohydrodynamics (MHD) eq's

$$
\left\{\begin{array}{l}
\partial_{t} v+\nabla_{v} v=(\operatorname{curl} B) \times B-\nabla P \\
\partial_{t} B=-L_{v} B \quad \text { Lorentz force } \\
\operatorname{div} v=\operatorname{div} B=0 \quad B \text {-magnetic field }
\end{array}\right.
$$ in $\mathbb{R}^{3}$

(on a unit charge with velocity, $j$ in the magn. field $B$ ) acts the Lorentz force $j \times B$, while $j=\frac{\text { curl } B}{4 \pi}$-Maxwell's es'
Thu (Vishik-Dolzhansty, tolm-Keypershmidt, Marsden-Ratiu-weinstcin,..) The MHD eg's are Hamiltonian on $\widetilde{g}^{*}$ for the group $\widetilde{G}=\operatorname{Diff}_{\mu}(M) \ltimes \operatorname{Vect}_{\mu}(M)$ with respect to the right-inv $L^{2} \oplus L^{2}$-metric and
have the form $\left\{\begin{array}{l}\partial_{t}[u]=-L_{v}[u]+L_{B}[b] \\ \partial_{t} B=-L_{v} B \text { for } u=v^{b} \\ b=B^{b}\end{array}\right.$

Def The vorticity 2-form is defined as $\omega:=d u \in \Omega^{2}(M)$ for $u=v^{b}$ for a manifold $M$ of any dim 'n
Note: $\partial_{t}(d u)=-L_{v}(d u) \Leftrightarrow \partial_{t} \omega+L_{v} \omega=0$
This is Kelvin's law: the fhid vorticity is transported (or frozen into) the flied flow.
Rm For $\mathbb{R}^{2}$ or any surface $M(\operatorname{dim} M=2)$ $\omega=\left(\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right) d x_{1} \wedge d x_{2}$, ie. the 2 form $\omega$ can be identified with a vorticity function

$$
\xi:=\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}=\operatorname{curl} v
$$

For $\mathbb{R}^{3}$ or any 3D mfd $M$ with a volume form $\mu$ the 2-form $\omega$ can be identified with the vorticity vector field $\bar{\xi}$ by $i_{\bar{\xi}} \mu=\omega$, i.e.

$$
\bar{\xi}=\left|\begin{array}{ccc}
\xi_{1} & \xi_{2} & \xi_{3} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\left(\frac{\partial v_{3}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{3}}\right) \frac{\partial}{\partial x_{1}}+\underbrace{}_{1,2,3}
$$

The vorticity form of the Euler equation is

$$
\partial_{t} \bar{\xi}=-L_{v} \bar{\xi} \quad \text { or } \quad \partial_{t} \omega=-L_{v} \omega
$$

for $\bar{\xi}=$ curl $v$
in $\mathbb{R}^{3}$
for the curd 2-form for any mod $M$.

Invariants of the Euler equations.
Def For 2D and any $K=1,2, \ldots$ the quantifies $h_{k}(v)=\int_{M}(\text { curl } v)^{k} \mu:=\int_{M}\left(\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right) d x_{1} d x_{2}$ are called enstrophies.
Thu They are invariants (first integrals) of the Euler equation in 2D, $\forall K=1,2, \ldots$
Def. For 3D the quantity Hel $(v):=\int_{M}(v$, curl $v) \mu$ is called helicity.

Thm Helicity Hel is an invariant of the Euler eq'n
Rm Rewrite: $H e l(v)=\int_{M}(v$, carl $v) \mu=\int_{M}\left(i_{\text {curl } v} u\right) \mu$ $=\int_{M} u_{\wedge} i_{c u l v} \mu=\int_{M} u_{A} d u \quad \operatorname{def} o f u=v^{b} M$
Rm 2 Note:

| $\operatorname{dim} M$ | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| \# first integrals | $\infty$ | 1 | $0 ?$ |$\quad$ No!

Them (Ovsienko-chekanov - Kh, (989)

1) For any 2 m -dim mfd $M$ there exist infinitely-many first integrals of the Euler equation (generalized enstrophies):

$$
I_{f}(v)=\int_{M} f\left(\frac{(d u)^{m}}{\mu}\right) \mu \text { for any } f^{\prime} n f: \mathbb{R} \rightarrow \mathbb{R}
$$

$E_{x}: I_{k}(v)=\int_{M}\left(\frac{(d u)^{m}}{\mu}\right)^{k} \mu=\int_{\lambda_{1}}\left(\operatorname{det}\left(\frac{\partial v_{j}}{\partial x_{i}}-\frac{\partial v_{i}}{\partial x_{j}}\right)^{k / 2} d x\right.$
for $f(x)=x^{k}$
2) For any $(2 m+1)$-dim for $M=\mathbb{R}^{2 m}$ net $M$ there exists the generalized helicity integral $I(v)=\int_{M} u_{\wedge}(d u)^{m}$

Ex for $M=\mathbb{R}^{2 m+1}$

$$
\begin{aligned}
& \underline{\text { Ex }} \text { for } M=\mathbb{R} \\
& I(v)=\int_{\mathbb{R}^{2 m+1}} \sum_{\left(i_{1} \ldots i_{2 m+1}\right)} \varepsilon^{i_{1} \ldots i_{2 m+1}} v_{i_{1}} \omega_{i_{2} i_{3}} \ldots \omega_{i_{2 m} i_{2 m+1}} d^{2 m+1} x \\
& \omega_{i j}=\frac{\partial v_{i}}{\partial x_{j}}-\frac{\partial v_{j}}{\partial x_{i}}
\end{aligned}
$$

Cor. Enstrophies in 2D and helicity in 3D are first integrals of the Euler equation.
(Indeed, Euler trajectories ccoadji orbits, where Casimirs are cons),
$R m-$ Exer: There are no new integrals for odd $\operatorname{dim} M^{2 m}$ from $\widetilde{M}^{2 m+2}=M^{2 m+1} \times[0,1] .\left(\right.$ Hint: $(d \tilde{M})^{m+1}=0$ on $\left.\widetilde{M}\right)$


Pf du is well-defined for the whole coset $[u]$, since $d(u+d f)=d u=d[u]$. Then $I_{f}$ and $I$ are well-defined on $g^{*}=\Omega^{1} / d \Omega^{\circ}$

$$
\left(e \cdot g \cdot \int_{M}(u+d f) \wedge(d(u+d f))^{m}=\int_{M} u \wedge(d u)^{m}=\int_{M}[u] \wedge(d(u])^{m}\right) \text {. }
$$

Moreover, their definitions are coordinate-pree (no metric used) and hence they are invariant w.r.t. coordinate changes $\Rightarrow$ they are Casimirs on git. QED
Prop-exer. The MHD eq's on $M^{3}$ admit $\begin{aligned} & \text { the first integral } \\ & \text { (called cross-helicity) } \\ & \text { col } \\ & M\end{aligned}(v, B)=\int_{M}(v, B) \mu$

Rm There are more subtle invariants for $[u]$ ord, which give more Casimirs, but not in integral form. E.g. \# of limit cycles or zeros of the vorticity field $\xi=$ curl $v$ in 3D. They ave not necessarily smooth fils. well discuss more Casimirs later.

Thu (Kudryartseva, Enciso-Peralta-Salas-Torres de Lizaur, C. Yang,...) Any regular $C^{1}$ functional on $C^{1}$ (also on $C^{k} \geqslant 4 C^{\infty}$ ) exact div-feee vector fields on a acpt $M^{3}$ and invariant under Diffu-action is a $C^{1}$ - $f^{\prime} n$ of helicity. In other words, helicity is the only regular Casimir for Diff m (M ${ }^{3}$ )

Equations of a barotropic fluid
M

$v$-velocity field
$\rho$-density of a fluid or gas

$$
\left\{\begin{array}{l}
\partial_{t} v+\nabla_{v} v=-\frac{1}{\rho} \nabla h(\rho) \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0
\end{array}\right.
$$

Here $p=h(\rho)$ is equation of state ( $\rho$ is "transported")
Usually $h(\rho)=c \cdot \rho \rho^{a}$ in gas dynamics
Rm This $\mathrm{eq}^{\prime}$ 'n is Hamiltonian on Go for the group $G=D_{i f f}(M) \propto C^{\infty}(M)$ with Hamiltonian $H=\int_{M}\left(\frac{1}{2}(v, v) \rho+\rho \Phi(\rho)\right) \mu$, where $\rho^{2} \Phi^{\prime}(\rho)=h(\rho)$

