Geometric Fluíd Dynamics

Henan University, Sept - Oct 2021

Boris Khesin (Univ of Toronto)

Lecture 5

M Energy and heliciby

Let M be a simply-conn pt. Riem, nfl B - a (magnetic) vet. field on M (e.g. $M \subset \mathbb{R}^{3}$) $\operatorname{div} B=0$ w.r.t. $\mu=d^{3} x$-volume form on The energy of B is $E(B)=\|B\|_{L^{2}(M)}^{2}=\int_{M}(B, B) \mu$
Consider a volume-preserving diffeo'm $\varphi: M \boxtimes$ Question Given a field B find $a:=\inf _{\varphi} E\left(\varphi_{*} B\right)$ Is $a=0$ or $a>0$?

Motivation: B -magnetic field of a star (the sun) "frozen into" the media (plazma), ie.

$$
\partial_{t} B=-L_{v} B=-\operatorname{curl}(v \times B) E
$$

The star radiates its energy

Question': Will the star extinguish completely?
(will a be positive or =0?)

Topological obstruction:
Assume that supp $B=C_{1} \cup C_{2}$, two solid tori

$E(B) \downarrow \approx$ most orbits shrink
Indeed, length \leadsto length $/ \lambda$, time remains the same

$$
\Rightarrow B \leadsto B / \lambda \Rightarrow E \leadsto E / \lambda^{2} .
$$

But linking prevents tori from infinite fattening, since transformations are volume-preserving.

Prop (Arnold 1973) $E(B) \geqslant C|\mathrm{Hel}(B)|$. where $\operatorname{Hel}(B):=\int_{M}\left(B\right.$, curl $\left.^{-1} B\right) \mu$ - helicity of B, and $c=c(M)$. (Note: "geometry \geqslant topology")
Rm. Here $A=$ curl $^{-1} B$ is a div-pee vector-potential $\& B$, ie. $\nabla \times A=B$, $\operatorname{div} A=0$. The integral is independent of the choice of A. Pf is an apple. of the Schwarz \& Poincare' inequalities to $A=$ curl $^{-1} B$ Recall, that "cur lcurl $=-\triangle$ ", i.e. "curl $\approx \sqrt{-\Delta}$. curl ${ }^{-1}$ on a copt meld is a bounded symmetric operator, whose spectrum accumulates to O on both sides: \qquad
Then $C(M)$ is the max abs. value of its eigenvalues, depends on M.

An important example (Moffatt 1969)
For a vect field B as above, without net twist inside C_{1}, C_{2}

$$
\operatorname{Hel}(B)=2 \operatorname{ll}\left(C_{1}, C_{2}\right) \cdot F l u x_{1} \cdot F l u x_{2} \neq 0
$$

Rm Recall: the linking number of two oriented
 curves Γ_{1} and Γ_{2} in M^{3} is

$$
l k\left(\Gamma_{1}, \Gamma_{2}\right):=\#\left(\partial^{-1} \Gamma_{1}\right) \cap \Gamma_{2}
$$

signed \#
Note! le is symmetric

- does not depend on the choice of $\partial^{-1} \Gamma_{1}$
- has a higher-dim generalization

An example: the Hoof field in S^{3}
For $S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid \sum_{i=1}^{4} x_{i}^{2}=1\right\}$
define $V\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(-x_{2}, x_{1},-x_{4}, x_{3}\right)$
Exer V corresponds
to the max eigenvalue $=\frac{1}{2}$ of curl $^{-1}$ on 5^{3}
\Rightarrow The tlopf field has the minimal energy among diffeomophic ones (by volume-pres. differ's)

A metric-free definition of helicily
Let M be a simply-conn $m f d, \mu$-volume form, M and ξ a div-free sect. field on M, ie. $L_{\xi} \mu=0$. $\Leftrightarrow \omega_{\xi}:=i_{\xi} M$ is a dosed (\Rightarrow exact) 2-form on M Hence $\omega_{3}=d \alpha$ for some 1-form α
Def the helicity $\mathrm{Hel}(\xi)$ of ξ on M is $\operatorname{Hel}(\xi)=\int_{M} \alpha \wedge d \alpha=\int_{M} d \alpha \wedge \alpha=\int_{M} \omega_{\xi} \wedge d^{-1} \omega_{\xi}$, for $d \alpha$
Ex. $\xi=$ curl v. Then

$$
\operatorname{Hel}(\xi)=\int_{M} i_{\xi} \mu \wedge d^{-1}\left(i_{\xi} \mu\right)=\int_{M} d u \wedge u=\int_{M}(c u \Omega l v, v) \mu \text {. }
$$

Cor (of coord-free del'n of helicty)
The helicity Hel (ξ) is preserved under the action on ξ of volume-pres differ's of M (ie. it is a topological invariant).
Rm. This was an "integral def'n" of helicity. What is its topological meaning?

Helicity as an asymptotic linking
Let M be a simply-connected closed 3D mud with a volume form μ (we do not fix metric now).

Def For a dir-feee vector field ξ on M (ie jut. $L_{\xi} \mu=0$) introduce the following function $\lambda_{3}(x, y), x, y \in M$

Let $g^{t}(x), g^{s}(y)$ be pieces of ξ-trajectories for times T, S resp. Assume that Δ is a "system of short paths" (joining any pair of pts on M and chosen a priori, e.g. geodesics) Close up the trajectory pieces by \triangle.
Then define

$$
\lambda_{\xi}(x, y):=\lim _{T, S \rightarrow \infty} \frac{1}{T \cdot S} l k\left(g^{t}(x), g^{s}(y), \Delta\right)
$$

Rm The limit exists for almost all $x, y \in M$ and doesn't depend on Δ under some could's (Arnold)
Better: \triangle-a system of geodesics, the limit exists in $L^{1}(M \times M)$ (T. Vogel)
Pf is based on the Birkhoff or L^{1} - ergodic theorems.
Than (V.Arnold 1973) Helicity Hel $(\xi):=\int(i \xi \mu) \wedge d^{-1}(i \xi \mu)$ is equal to the averaged linking:

$$
\mathrm{Hel}(\xi)=\iint_{M \times M} \lambda_{\xi}(x, y) \mu_{x} \mu_{y}
$$

It is natural to call it the asymptotic Hepf invariant.

Pf sketch for $M \subset \mathbb{R}^{3}$ Consider the Biot-Savart integral for vector-potential $A=\mathrm{cull}^{-1} \xi$:

$$
A(y)=-\frac{1}{4 \pi} \int_{M} \frac{\xi(x) \times(x-y)}{\|x-y\|^{3}} \mu_{x}
$$

Then the helicity is
Then the telicity is

On the other hand, recall the explicit formula for the linking number.

Digression on the Gauss formula

Gauss thu: The linking number of closed curves

$$
l k\left(\gamma_{1}, \gamma_{2}\right)=\frac{1}{4 \pi} \int_{0}^{T_{1}} \int_{0}^{T_{2}} \frac{\left(\dot{\gamma}_{1}, \dot{\gamma}_{2}, \gamma_{1}-\gamma_{2}\right)}{\left\|\gamma_{1}-\gamma_{2}\right\|^{3}} d t_{1} d t_{2}
$$

Note: ll $\left(\gamma_{1}, \gamma_{2}\right)=\operatorname{deg}\left(f: T^{2} \rightarrow S^{2}\right)$, where $f=F /\|F\|$ for the map $F\left(t_{1}, t_{2}\right):=\gamma_{1}\left(t_{1}\right)-\gamma_{2}\left(t_{2}\right)$

Hence for 2 pieces of ξ_{S}-trajectories their $l k$ is

$$
\lambda_{\xi}(x, y)=\lim _{T_{1} s \rightarrow \infty} \frac{1}{4 \pi T \cdot s} \int_{0}^{T} \int_{0}^{s} \frac{(\dot{x}(t), \dot{y}(s), x(t)-y(s))}{\|x(t)-y(s)\|^{3}} d t d s
$$

where $x(t)=g^{t}(x)$, and we neglect the integrals $y(s)=g^{s}(y)$ over short paths \triangle.
Now the result follows from the Birkhoff ergodic the: the time average of $\lambda_{3}(x, y)$ along the measure-pres. flow of $\}$ coincides with the space average, given by the integral expression of $\mathrm{Hel}(\xi)$.

QED.

Return bo energy estimates
Cor. If a div. free field has nonzero helicity, its energy cannot be made arbitrarily small.
But what if $\mathrm{Hel}(\xi)=0$?
For instance two pairs of solid tori linked in opposite directions?
Thu (Freedman-He 1991) Suppose a vect.field ξ in \mathbb{R}^{3} has an invariant torus T forming a nontrivial knot of type K. Then

$$
\begin{align*}
& \text { knot of type } K . \text { Then } \tag{为}\\
& E(B) \geqslant\left(\frac{16}{\pi \cdot \operatorname{Vd}(T)}\right)^{1 / 3} \cdot|F \ln \times B|^{2}(2 \operatorname{gemus}(K)-1)
\end{align*}
$$

Cor For a nontrivial $K, E\left(\varphi_{*} B\right)>0$

Cor If a field B has at least one closed linked trajectory of an elliptic type $\Rightarrow E\left(\varphi_{*} B\right)>0$.

The Sakharov-Zeldovich problem Let B be the rotation field of a ball in \mathbb{R}^{3}.
Problem: Is $\inf _{4} E\left(\varphi_{*} B\right)=0$?

Thu (Freedman 1990) There exists a sequence of volume-pres. differ's $\varphi^{(n)}: M S$ such that $E\left(\varphi_{*}^{(n)} B\right) \rightarrow 0$ as $n \rightarrow \infty$

Pf idea:

Stretch a subball to shorten trajectory and put the snake obtained inside the sphere.
Use Moser's lemma on existence of volume -pres. diffeo'm to estimate the energy in the shell image.

Another direction: Fast dynamo problem
Def. The kinematic dynamo equation is

$$
\left\{\begin{array}{l}
\partial_{t} B=-L_{v} B+\eta \Delta B \\
\operatorname{div} B=0
\end{array}\right.
$$

The unknown magnetic field $B(t)$ is stretched by the fluid flow with velocity v, while a low diffusion dissipates the magnetic energy $E(B)$.
Problem Does there exist a chiv-free vect field V in M sit. $E(B(t))$ grows exponentially in time (for some initial $B(\theta)$) as $\eta \rightarrow 0$ or $\eta=0$?

Look for solutions $B=e^{\lambda(v) t} B(0)$ such that $\operatorname{Re} \lambda(\eta) \geqslant \lambda_{0}>0$ as $\eta \rightarrow 0$ or $\eta=0$.
A non-dissipative dynamo $(\eta=0)$ corresponds to a frozen magnetic field.
Rm There are many works constructing explicit dynamos and proving a necessity of chaotic behavior of v for $\eta \neq 0$. One of popular examples is the $A B C$-flow.
Ex The ABC flows (Arnold-Bettrami-childress) are

$$
\begin{aligned}
& V=(A \sin z+C \cos y) \frac{\partial}{\partial x}+(B \sin x+A \cos z) \frac{\partial}{\partial y}+(C \sin y+B \cos x) \frac{\partial}{\partial z} \\
& \text { on } 3 D \text { torus } T^{3}=\{(x y z)
\end{aligned}
$$ on 3D torus $T^{3}=\{(x, y, z) \mid \bmod 2 \pi\}$.

They are eigen for curl: $\operatorname{curl} V=V$

Bonus: Why Hopf?
Recall: The Hop invariant of a map $\pi: S^{3} \rightarrow S^{2}$ has 2 def's:
a) geometric/topological:

$$
\operatorname{Hop}_{1}(\pi)=l k\left(\pi^{-1}(a), \pi^{-1}(b)\right)
$$

It doesn't depend on $a, b \in S^{2}$
b) integral: take $\nu \in \Omega^{2}\left(S^{2}\right), \int P=1$,

then $\pi^{*} \nu \in \Omega^{2}\left(s^{3}\right)$ is closed \Rightarrow exact on S^{3}. Then

$$
\left.\operatorname{Hopf}_{2}(\pi)=\int_{S^{3}} \pi^{*}\right) \wedge d^{-1}\left(\pi^{*} \nu\right)
$$

why Hoof ${ }_{2}$ is an integer?

Note: in the formula for Hoptz the closed 2 -form P can be replaced by a cohomological one, \tilde{D} on S^{2}, since their difference is exact, $\nu-\tilde{\nu}=d \alpha, \alpha \in \Omega^{\prime}\left(S^{2}\right)$,

$$
\begin{array}{r}
\int_{S^{3}} \pi^{*} \nu \wedge d^{-1}\left(\pi^{*} \nu\right)-\int \pi^{*} \nu \wedge d^{-1}\left(\pi^{*} \tilde{\nu}\right)=\int_{S^{3}} \pi^{*} \nu \wedge d^{-1}\left(\pi^{*} d \alpha\right) \\
\left.=\int_{S^{3}} \pi^{*} \nu \wedge \pi^{-1}\left(S^{2}\right)=\int_{S^{2}}\right\rangle \wedge \alpha=0 .
\end{array}
$$

Now take $\nu=\delta(a), \tilde{\nu}=\delta(b)$ - the δ-type 2-forms in δ^{2}, supported at pts a and b. Then $\pi^{2} \nu=\delta\left(\pi^{-1}(a)\right)$ and $\pi^{*} \mathcal{Y}=\delta\left(\pi^{-1}(b)\right)$, δ-type 2-forms in S^{3} supported on $\pi^{-1}(a)$, Then $d^{-1}\left(\pi^{*} \nu\right)=\delta\left(\partial^{-1} \pi^{-1}(a)\right)-1$-form supported $\pi^{-1}(b)$. on a Seifert surface $\partial^{-1} \pi^{1}(a)$ in S^{3}.

Hence Hop $(\pi)=\iint_{s^{3}} \pi^{*} \gamma \wedge d^{-1}\left(\pi^{*} \gamma\right)=\int_{s^{3}} \pi^{*} \widetilde{\nu} \wedge d^{-1}\left(\pi^{*} \gamma\right)$

$$
\begin{aligned}
& =\int_{S^{3}} \delta\left(\pi^{-1}(b)\right) \wedge \delta\left(\partial^{-1} \pi^{-1}(a)\right)=\# \partial^{-1} \pi^{-1}(a) \cap \pi^{-1}(b) \\
& =l k\left(\pi^{-1}(a), \pi^{-1}(b)\right)=H \text { opp }(\pi) \quad \text { surface wite ans }
\end{aligned}
$$

This proves the equivalence of 2 definitions. Arnold's the is an asymptotic version of this equivalence. Namely instead of a map $\pi: S^{3} \rightarrow S^{2}$, where the fibers ave closed (which corresponds to a field ξ whose all trajectories are closed) consider a div-free v.f. ξ with arbitrary trajectories.

