Geometric Fluíd Dynamics

Henan University, Sept - Oct 2021

Boris Khesin (Univ of Toronto)

Lecture 6

Geometry of 2D fluid
Consider an ideal fluid in $\mathbb{R}^{2}, \mu=d x \wedge d y$ The fluid velocity field v is div-fuee \Rightarrow Hamiltonian Let ψ be the stream (=Hamiltonian) $f^{\prime} n$ for v, on R^{2} i.e. $v=$ grad $\psi=\left(-\frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial x}\right)$.

The vorticity function is $\omega=$ curl $v=\Delta \psi$. Equivalent forms of the 2D Euler equation:

$$
\partial_{t} \omega=-L_{v} \omega \quad \text { or } \quad \partial_{t} \omega+\{\psi, \omega\}=0
$$

for $\omega=c u r l v$ for $\omega=\Delta \psi$
(\Leftrightarrow frozenness of the vorticity).

Kirchhoff equations for point vortices Assume that the singular vorticity $\omega=\sum_{j=1}^{N} \Gamma_{j} \delta\left(z-z_{j}\right)$ is supported on N point vertices $z_{j}=\left(x_{j}, y_{j}\right) \in \mathbb{R}^{2} \simeq \mathbb{C}$ of strengths Γ_{j}. Their Euler evolution is given by the Kirchhoff equations (1876):

$$
\Gamma_{j} \dot{x}_{j}=\frac{\partial \mu}{\partial y_{j}}, \Gamma_{j} \dot{y}_{j}=-\frac{\partial \mathscr{l}}{\partial x_{j}}, j=1, \ldots, N
$$

for $H\left(z_{1}, \ldots, z_{N}\right)=-\frac{1}{4 \pi} \sum_{j<k}^{N} \Gamma_{j} \Gamma_{k} \ln \left|z_{j}-z_{k}\right| \quad\left\lfloor\Gamma_{N}\right.$
Exer These equations are Hamiltonian in $\mathbb{R}^{2 N}$ with the Hamill. fin \mathscr{L} and the sympl. Structure $\sum_{j=1}^{N} \Gamma_{j} d x_{j} \wedge d y_{j}$ (or the Poss , bracket $\{f, g\}=\sum_{j=1}^{N} \frac{1}{\Gamma_{j}}\left(\frac{\partial f}{\partial x_{j}} \partial g \partial_{j}-\frac{\partial f}{\partial y_{j}} \frac{\partial g}{\partial x_{j}}\right)$)

Hint: Here $\psi=\Delta^{-1} \omega=\frac{1}{4 \pi} \sum_{j=1}^{N} \Gamma_{j} \ln \left|z-z_{j}\right|$
$($ Green'sf'n in $\left.\mathbb{R}^{2}\right)$

$$
v\left(z_{j}\right)=\left.\operatorname{sgrad} \psi\right|_{z=z_{j}}=\left.\operatorname{Jgrad}\right|_{z=z_{j}}\left(\frac{1}{4 \pi} \sum_{\substack{k=1 \\ k \neq j}} \Gamma_{k} \ln \left|z-z_{k}\right|\right)=\frac{1}{\Gamma_{j}} J \frac{\partial \mathcal{H}}{\partial z_{j}}
$$

Rm . For rigorous derivation of the vortex model lie. if $\omega_{0} \rightarrow \sum_{j} \Gamma_{j} \delta\left(z-z_{j}\right)$ then $\left.\omega(t) \rightarrow \sum_{j} \Gamma_{j} \delta\left(z-z_{j}(t)\right)\right)$ see Marchioro-Pulverenti 1994.

Rim The system is invariant w.r.t. the group of Euclidean motions $E(2)=S O(2) \propto \mathbb{R}^{2}$ (translations)
The corresponding Noether integrals ave

$$
\begin{aligned}
& Q=\sum \Gamma_{j} x_{j}, P=\sum \Gamma_{j} y_{j} \text { (translations) } \\
& F=\sum \Gamma_{j}\left(x_{j}^{2}+y_{j}^{2}\right) \quad \text { (rotations) }
\end{aligned}
$$

Note: eg. $\{Q, P\}=\sum \Gamma_{j}$ (not in involution for $\sum \Gamma_{j} \neq 0$)
There are 3 integrals in involution: $\mathcal{H}, F, Q^{2}+P^{2}$ on $\mathbb{R}^{2 N}$
Cor The system of N point vertices on \mathbb{R}^{2} is integrable for $N=1,2,3$ (and for $N=4$ if $\sum \Gamma_{j}=0$)
Thu (ziglin) For $N \geqslant 4$ and generic Γ_{j} it is nonintegrable.

Ex $N=1$ A single vortex stays at rest in \mathbb{R}^{2} $N=2$ A pair of vortices rotates about their vorticity center $z_{c}=\frac{\Gamma_{1} z_{1}+\Gamma_{2} z_{2}}{\Gamma_{1}+\Gamma_{2}}$

Note: A collapse of 2 vertices is impossible!
vortex pair
dipole

$$
\Gamma_{1}=r_{2}
$$

$$
\Gamma_{1}=-\Gamma_{2}
$$

The interaction of Cyclone Emma (approaching from the southwest) and Anticyclone Hartmut (covering Europe from the northeast) on February 27, 2018. (Courtesy of NASA, Wiki-Commons.)
$N=3$ The motion of 3 point vortices is integrable and there are self-similar collapsing solutions (Gröbi, Aref, P. Newton...)
There are similar results for s^{2} instead of \mathbb{R}^{2}.

Self-similar motion in which the vortex triangle changes its size but not its shape (a drawing from W. Gröbli's 1877 dissertation). This self-similar expansion corresponds to vortices of strengths $\Gamma_{1}=3, \Gamma_{2}=-2$, and $\Gamma_{3}=6$;

Point vortices in the half-plane
Voutices "interact" with the boundary
$N=1$ A single vortex moves along the boundary (it is equivalent to a dipole, the mirror image)
\qquad

Indeed, the Green function for half-plane has two mirror terms to provide zero boundary condition (impermeable boundary).
$N=2$ Two point vertices can have a variety of motions, including leapfrogging, depending on the interaction

Figure 6. As the interaction weakens, either the vortices in the dipole go to infinity, or one of them makes a kink, or they pass around each other. (The orange and aquamarine colors correspond to the two vortices.)

Figure 7. For a vortex pair, as the interaction weakens, a leapfrogging motion of the vertices changes to intertwining sinusoidallike trajectories via a cusp-type motion.

The (Wang - K. 2021)
$\overline{A t}$ the moment of cusp bifurcation the two vortices lie on the same vertical. The cross-ratio of four points $C R\left(z_{1}, z_{2}, \bar{z}_{2}, \bar{z}_{1}\right)=\varphi=\frac{\sqrt{5}+1}{2}$, the golden

Reminder 1. The cross-ratio of 4 pts on a line

$$
C R\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\frac{\left(y_{1}-y_{4}\right)\left(y_{2}-y_{3}\right)}{\left(y_{1}-y_{2}\right)\left(y_{3}-y_{4}\right)}
$$

Reminder 2

The golden ratio $\phi=a / b$ is the ratio of length to width for the special rectangle $A \cup B$ that preserves this ratio after cutting out the square $B: \phi=b /(a-b)$.

$$
\varphi=\frac{a}{b}=\frac{b}{a-b} \text {, i.e.. }
$$

φ is a positive root of

$$
\begin{gathered}
\varphi^{2}-\varphi-1=0 \\
\varphi=\frac{\sqrt{5}+1}{2}=1.618033 \ldots
\end{gathered}
$$

The best application of the golden ratio: to convert miles \rightarrow kilometers take the next Fibonacci number:

$$
\begin{aligned}
& 1,1,2,3,5,8,13,21,34,55,89,144, \ldots, \\
& 5 \mathrm{mi} \approx 8 \mathrm{~km} \text { or } 130 \mathrm{~km} \approx 80 \mathrm{mi} \\
& 55 \mathrm{mi} \approx 89 \mathrm{~km} \\
& \text { Indeed, } \frac{F_{n+1}}{F_{n}} \rightarrow \varphi=1.6180 \ldots \text { as } n \rightarrow \infty,
\end{aligned}
$$ while $\frac{\mathrm{mi}^{\mathrm{km}}}{\mathrm{km}}=1.6093$, less than 0.5% off φ !

Reminder: Invariants of the Euler equations.
Def For 2D and any $K=1,2, \ldots$ the quantifies $h_{k}(v)=\int_{M}(c u r l v)^{k} \mu:=\int_{M}\left(\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right) d x_{1} d x_{2}$ are called enstrophies.
Thu They are invariants (first integrals) of the Euler equation in 2D, $\forall K=1,2, \ldots$ Furthermore, enstrophies are Casimirs, i.e. invariants of the $D_{i f f}(M)$-action.

Recall: For a manifold M of any dimension with a volume form μ Casimirs for the group Diff (M) are invariants of cosets $[u]$ of 1 -forms $u=v^{b}$ or of the (exact) vorticity 2 -form $\omega=d u$ on M.
In 2D the vorticity 2 -form $\omega=d u$ corresponds to the vorticity function on a symplectic surface

Auxiliary problem:
Find a complete set of invariants of a smooth function on a symplectic surface $\left(M^{2}, \mu\right)$.

Def. A smooth function F on M is a simple morse function if all its critical points are nondegenerate and all its critical values are distinct.
Def The Reel graph of F is $\Gamma_{F}:=M /\{F$-levels $\}$, the set of F-levels.

Properties of F_{F} :

- crit. pts \leadsto vertices
- F-natural parameter
- area $\mu \leadsto$ measure ν on $M \leadsto$ on T_{F} - genus $(M) \leadsto b_{1}\left(\Gamma_{F}\right)$

Furthemore - at min $/$ max $(l) P$ is smooth, $\frac{d P}{d f} \neq 0$

- at saddles $(Y) P$ is \log-smooth, ie.

$$
\nu((v, x))=\varepsilon_{i} \psi(f(x)) \ln |f(x)|+\eta_{i}(f(x)) \text {, } \psi(0)=0, \psi^{\prime}(0) \neq 0
$$

Def (Γ, f, ν) is a measured Reel graph if Γ is an oriented graph with 1 -or 3 -valent vertices of f is monotone and ν is \log-smooth. Types \downarrow or Y
The (Izosimov-Kh. 2016) Two simple Morse f's on (M^{2}, μ) are in the same Diff μ-orbit iff their measured Reel graphs are isomorphic (i.e. ヨ 1-1 correspondence between simple Morse f's and measured Reel gr's compatible with M : $\int_{\Gamma} \nu=\int_{M} \mu$, genus $(M)=b_{1}(\Gamma)$).

Cor The "generalized enstrophies" of F are $h_{k, e}(F):=\int_{M} F^{k} \mu$ and they form a complete set of Casimirs for $M=S^{2}$, where $S^{2} \supset M_{e} i=\pi^{-1}(e)$ for all edges $e \in \Gamma_{F}$ and all $k \in \mathbb{Z}_{+}$
(Proof follows from the Hausdorff moment problem)
Rm For a surface M of higher genus one needs to fix also circulations over handles of M, since invariants of coset $[u] \in \Omega^{1} / d s^{\circ}$ are more subtle than for $d[u]$ (or the vorticity fin $F:=d u / \mu$).

Let M be a surface of genus x (ie, with x handles). Consider a coset [u] with vorticity fin $F=d u / \mu$ and the measured Reeb graph Γ_{F}. It turns out, one can define "an integral" of a 1 -form over a graph (rather that over a segment).
Def The circulation space consists of all functions C on the meas. Reel graph that are antiderivatives of f,

i.e satisfying

1) $\forall x \in \Gamma \cup V(\Gamma), f=\frac{\partial c}{\partial \mu}$ and for $\lim _{x \rightarrow v^{-}} c(x)=l$ one has
2) $l=0$ at $!9$ and 3$) l_{0}=l_{1}+l_{2}$ at Y

In other words, when we integrate over a branch pt, we take the "space of all possible splittings," satisfying the Kirchhoff rule.
Ex Given $[u]$ on $M\left(\right.$ with $\left.F=\frac{d u}{\mu}\right)$, define a $f^{\prime} n c: \Gamma_{F} \backslash V\left(\Gamma_{F}\right) \rightarrow \mathbb{R}$ by $c(x)=\int_{T^{-1}} u$. It does not depend on $u \in[u]$ and $f=\frac{\partial c}{\partial \mu}$.
If $u=v^{b}$ for a rect. field v on M, then $c(x)$ is the circulation of v over the cycle $\pi^{-1}(x) \subset M$
Prop (Izosimov - Kh, zo16) The meas. Reel graph (Γ, f, μ) admits a circulation function if $\int_{\Gamma} f \mu=0$.
The space of circulation functions has ${ }^{\Gamma} \operatorname{dim}=x=b_{1}(\Gamma)$ $=$ genus M.

The (Izosimou-Kh 2016)
Coadjaint orbits of Diff $\mu(M)$ are in 1-1 correspondence with circulation graphs compatible with M
(i.e. for which meas + genus coincide).

PP based on the lemma de Morse isochove (Colin de Verdier-Vey)
For a morse $f^{\prime} n F$ on a surface with avea form μ there is a chart st. locally $\mu=d p$ ida and $F=\lambda \circ \delta$ with $S=p^{2}+q^{2}$ or $p q$ and λ is smooth near $0 \in \mathbb{R}$ and $\lambda^{\prime}(0) \neq 0$.

Rm. There are versions for the groups Diff $\mu, 0(M)$, $\operatorname{Ham}(M)$, for M with boundary (Izosimov, I Kirillov, Mousavi,).

