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Arnold’s setting for the Euler equation

M — a Riemannian manifold with volume form p
v — velocity field of an inviscid incompressible fluid filling M
The classical Euler equation (1757) on v:

o:v+V,v=-Vp.

Here div v = 0 and v is tangent to OM.
Vv is the Riemannian covariant derivative.

Theorem (Arnold 1966)

The Euler equation is the geodesic flow on the group G = Diff ,(M) of
volume-preserving diffeomorphisms w.r.t. the right-invariant L?>-metric
E(v) =3 [,(v.v) pu (fluid’s kinetic energy).
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Application: Other groups and energies

Group Metric Equation
S0O(3) (w, Aw) Euler top
E(3) = SO(3) x R3 quadratic forms Kirchhoff equation for a body in a fluid
S0(n) Manakov’s metrics n-dimensional top
Diff(S?) I- Hopf (or, inviscid Burgers) equation
Diff(S?) H/? Constantin-Lax-Majda-type equation
Virasoro L2 KdV equation
Virasoro H? Camassa—Holm equation
Virasoro H! Hunter—Saxton (or Dym) equation
Diff,, (M) I? Euler ideal fluid
Diff,, (M) H! averaged Euler flow
Symp, (M) L2 symplectic fluid
Diff(M) L? EPDiff equation
Diff , (M) x Vect,(M)) 212 magnetohydrodynamics
C>(S',S0(3)) H-1 Heisenberg magnetic chain

Remark These are Hamiltonian systems on g* with the quadratic
Hamiltonian=kinetic energy for the Lie-Poisson bracket.

There are suitable functional-analytic settings of Sobolev (H*® for
s > 1+ n/2) and tame Fréchet (C°) spaces.



Exterior geometry of Diff ,(M) C Diff(M)

Dens(M) — the space of smooth density functions ( “probability
densities” ) on M:

Dens(M) = {p € C*(M) | p > 0,/Mpu — 1)

Note:

Dens(M) = Diff(M)/Diff ,(M),
the space of (left) cosets of . i oolleicn
Diff,,(M), with the projection ide BoRzont B

Diff(jl[)

7: Diff(M) — Dens(M). ‘ s
Fibers are 77 1(0) & §
= {¢ € Diff(M) | . = 0} b g
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Geometry of Diff(M)

Remark Compare “the dimensions” of the fiber and the base:

dim(M) = 1 2 3

Diff ,(M) | ~Iso(M) | ~ Ham(M) | = Vect,(M) | ~ Vect,(M)
A ! Vv Vv

Dens(M) | ~ C>(M) C>(M) C>(M) C>(M)

Define an L2-metric on Diff(M) by

G By = / 62
M

For a flat M this is a flat metric on Diff(M).
It is right-invariant for the Diff,(M)-action (but not Diff(M)-action):
ch(@a 90) = chon(gb on,po 77) for n € Diﬁu(M)-



The Euler geodesic property for a flat M

Let a flow (t, x) — g(t, x) be defined by its velocity field v(t, x):
O:g(t,x) = v(t,g(t,x)), g(0,x) = x.

The chain rule immediately gives the acceleration
92g(t, x) = (Brv + V, v)(t, g(t, x)).

Geodesics on Diff(M) are straight lines, 9%g(t,x) = 0, which is
equivalent to the Burgers equation

o,v+V,v=0.
The Euler equation 0;v + V,v = —Vp is equivalent to

0$tg(tax) . —(Vp)(t,g(t, X)):

which means that the acceleration 0%,g L ;2 Diff,,(M).

Hence the flow g(t,.) is a geodesic on the submanifold
Diff ,(M) C Diff(M) for the L*-metric.
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Geometry of Diff(M) (cont’d)

Theorem (Otto 2000)

The left coset projection 7 is a Riemannian submersion with respect to
the L?>-metric on Diff(M) and the Kantorovich-Wasserstein metric on
Dens(M).

Definition of the Kantorovich-Wasserstein (L?) metric
The KW distance between i, v € Dens(M):

Dist?(p, v) := inf{/ dist3,(x, o(x)) gt | @upt = v}.
M
The corresponding Riemannian metric on Dens(M):

6ol = [ 190 pn, for p+div(pVe) = 0.
M

where p € C5°(M) is a tangent vector to Dens(M) at the point pp.
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Hamiltonian view on a Riemannian submersion

Let 7 : P — B be a principal bundle with the structure group G.

A Riemannian submersion w: P — B preserves lengths of horizontal
tangent vectors to P.

Geodesics on B can be lifted to horizontal geodesics in P, and the lift is
unique for a given initial point in P.

For P/G = B the symplectic reduction (over 0-momentum) is

T*P//G = T*B.

If P is equipped with a G-invariant Riemannian metric <, >p it induces
the metric <, >pg on the base B.

Proposition The Riemannian submersion of P to the base B, equipped
with the metrics <,>p and <, >pg is the result of the symplectic
reduction T*P//G = T*B with metric identification of T and T*.



The Euler equation for barotropic fluids

v — velocity field of a compressible fluid
filling M

p — density of the fluid

The equations of a compressible
(barotropic) fluid (or gas dynamics) are

1
ov+ Vv + ;VP(,O) =0

Orp + div(pv) = 0,

for the pressure function P(p) = €'(p)p?.

Here e(p) is the internal energy depending on fluid’s properties.

For an ideal gas P(p) = C - p? with a = 5/3 for monatomic gases (argon,
krypton) and a = 7/3 for diatomic gases (such as nitrogen, oxygen, and
hence approximately for air).



Barotropic fluid as a Newton's equation

Theorem (Smolentsev, K.-Misiolek-Modin)

The equations of a compressible barotropic fluid with internal energy e(p)
are equivalent to Newton's equations V ;o = —V(6U/ép) o ¢ on
¢ € Diff(M) for the potential U(p) = [,, e(p)p -

Diff(az)
Equivalently, this is the Hamiltonian
system on T*Diff(M) with H = K + U, o
where U(p) = U(p) for p = det(Dp~). d horizontal geodesic :

1
H Uu

For v = V# the equation descends to Q& @59
Dens(M). = 1
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Other Newton's equations in the [*-geometry

— Classical mechanics: U(p fM x)pp for a smooth potential
function Von M — Burgers equation with potential

v+V,wv+VV =0

— Shallow water equations: quadratic potential U(p) = 3 [, p°n =
v+V,w+Vp=0

— Fully compressible fluids: potential U(p, o), smaller symmetry group,
larger quotient Dens(M) x Q"(M) = v+ V,v + p~1VP(p,o) = 0 and
the continuity equations for p and o

— Compressible MHD: smaller symmetry group Diff,,(M) N Diff g,(M);
potential U = [, e(p)pp+ 5 [, BN *B

— Relativistic Burgers equation: for ¢: [0,1] x M — M the action is

1 1
—/ / Cz\/l——2|¢|2/w't
0o JMm c



Alternative approach: semidirect products

Mantra: see the continuity equation =—> look for a semidirect product
group.

Example
For the group S = Diff(M) x C*(M) with product

(0, F)-(¥,8) = (poth,pug +f), pug=gop !

define the energy function on s

Evie)= [ (G000 +reto) )i

Then the Hamiltonian equation on s* gives the baropropic fluid with
P(p) = p°€(p).

Similarly for MHD, a rigid body in a fluid, etc. See F.Dolzhansky,
D.Holm, J.E.Marsden, R.Montgomery, T.Ratiu, A.Weinstein, ...



Hydrodynamics and Quantum Mechanics

Theorem (Madelung, von Renesse)

The (non)linear Schréodinger equation
i0p + A+ VY + F([9]?)y =0

on the wave function ) : M — C on an n-dim manifold M, where
V: M — R and f: R, — R, is mapped by the transform 1) = \/pe'? to
the equations of a barotropic-type fluid

A
8tv+Vvv+2V(V+ f(p) — %) = 0]

Orp + div(pv) =0

for v = V0. )

It is regarded as a hydrodynamical form of QM.



Madelung and his paper

Erwin Madelung

1881 - 1972
E. Schrodinger " An Undulatory Theory of the Mechanics of Atoms and
Molecules” Physical Review, Dec. 1926.
E. Madelung " Quantentheorie in hydrodynamischer Form” Z. Phys. 1927.

Quantentheorie in hydrodynamischer Form.
Von E. Madelung in Frankfurt a. M.

(Eingegangen am 25. Okiober 1926.)



Geometry behind Madelung

The Madelung transform ® : (p,0) — 1 = \/pe’®. More precisely:

For (p,0) we have [p=1,p>0and [f]={0+ C|VC € R}, i.e. we
have (p, [0]) € T*Dens(M).

For 1) we have ¢ # 0, [|[¢|%, =1 and [¢)] = {¢e'™ | Vo € R}, i.e. we
have [1)] € PC®(M,C \ 0).

Hence,

The Madelung transform is
® : T*Dens(M) — PC*(M,C \ 0),

where

(0, [0]) =[]  for ¢ = +/pe?.




Madelung transform as a symplectomorphism

Consider the space of normalized densities Dens(M) and projectivize
wave functions PC*>°(M, C). Now regard (p, [0]) € T*Dens(M).

Theorem (K.-Misiolek-Modin)

The Madelung transform & : (p, [6]) — [¢] for v = /pe'® induces a
symplectomorphism

®: T*Dens(M) — PC>(M,C\{0})

for the canonical symplectic structure of T*Dens(M) and the natural
Fubini-Study symplectic structure of PC*°(M,C).

¥

The Madelung transform is a symplectic submersion to the unit sphere in
L?(M,C) (von Renesse).



Thus the Madelung transform maps Hamiltonian systems to Hamiltonian
ones: the Hamiltonian

HW) = 5 [ 196+ [ (VPR -+ F(uPn

of the Schrodinger equation on (the projectivization of) C*°(M, C) for
F’' = f is taken to the Hamiltonian

~ 1 | Vpl?
H(p,9)=§/MIV9|2pu+ §/M| 5 u+2/M(V/)+F(p))u-

on T*Dens(M).



H'-metrics on Diff(M) and information geometry

Example

For M = S! and right-invariant metrics on Diff(S?):
the L2-metric E(v) = 3 [ v? dx = the Burgers equation

ve + 3wy, = 0;
the Hl-metric 3 [ v2 + (v/)? dx => the Camassa—Holm equation
Ve + 3Wyx — Vix — 2VxVix — Wigx + Vi = 0;

the H'-metric 1 [(v/)? dx = the Hunter-Saxton equation

Vot + 2V Ve W, — 0

For any compact M the (degenerate) H-metric on Diff(M) is given by
(v,v) = 7 [;,(div v)?u and it descends to Dens(M)

The projection 7 : Diff(M) — Dens(M) is ¢ +— p = /|Det(Dy)|.



H'-metrics (cont'd)

What is the induced metric on Dens(M)?

Theorem (K., Lenells, Misiolek, Preston 2010)

There exists an isometry Dens(M) ~ U C §°, r = \/u(M)
(an open part of an inf-dim sphere).

Diff(ar)
Corollary E

— This is the Fisher-Rao metric on
Dens(M) used in geometric statistics;
— It has constant curvature, explicit
description of geodesics on Dens(M),
their integrability.

Dens(ay nl y

ﬁ\__—/g/'

geodesic



Summary of two metrics on Dens(M) so far

The Kantorovich-Wasserstein metric:
65 (5.) = [ 167 pn for -+ div(p78) 0
M

(depends on the Riemannian structure on M).

The Fisher-Rao metric:

G R (p, p) = /M (g)zpu

(independent of the Riemannian structure on M).



Newton's Equations for H-metrics

Step aside: the Neumann problem

The classical (finite-dimensional) Neumann problem is a system on the
tangent bundle TS"” with the Lagrangian given by

: 9.9
L(q.q) = %)
and where A is a symmetric positive definite (n+ 1) x (n+ 1) matrix.

This system is related to the geodesic flow on the ellipsoid x- Ax =1 and
is integrable on T*5".

—q-Aq, where ge S" c R™!




Neumann problem (cont'd)

For the unit sphere $>°(M) = {f |, F2 = 1} C C®(M) N [2(M) take
the quadratic potential V/(f) = 3(Vf,Vf)2 = 3 [, |Vf|?w.

An infinite-dimensional Neumann problem: Find extremals

f:[0,1] — S°°(M) minimizing the action functional

|

.. 1 1 -
~(f,F)2 — Z(VF,VFp = —/ (F2 + FAf) .
2 2 2 Jis

Consider the Fisher information functional on Dens(M):

1 [ |Vp?
/p=—/ 4,
(p) 2,

Theorem (K.-Misiolek-Modin)

Newton's equations on Dens(M) with respect the Fisher-Rao metric and
the Fisher information potential is equivalent to the infinite-dimensional
Neumann problem, with the map p — f = /p establishing the
isomorphism.

L(f,f) =




Madelung as an isometry and a Kahler map

The Fisher-Rao metric on Dens(M) gives rise to
the Fisher-Rao-Sasaki metric on T*Dens(M):

GFRS((5.0), (5,6)) = /M %u + [ @ron

Theorem (K.-Misiolek-Modin)

The Madelung transform & is an isometry (and hence a Kahler map)
between the spaces T*Dens(M) equipped with the Fisher-Rao-Sasaki
metric and PC>°(M,C\{0}) equipped with the Fubini-Study metric.

The (infinite-dimesional) Fubini-Study metric on PC*°(M,C) is

<> <Y ><y Y >
[k [y

G (¢,9) =



Madelung transform as a momentum map [D.Fusca]

Definition
The semidirect product group S = Diff(M) x C>*°(M) > (¢, a) acts on
the space C*°(M, C) > 9 of wave functions as follows:

(,3) 09 = V/|Det(Dp1) e~ (g o p71).

(¢ is pushed forward by a diffeomorphism ¢ as a complex-valued
half-density, followed by a pointwise phase adjustment by e=//2).

This action
— descends to the space of cosets [¢)] € PC>*(M,C),

— is Hamiltonian.



Madelung transform as a momentum map (cont'd)

Theorem (D.Fusca 2017)

The momentum map

M: C>®(M,C) — s* = QY(M) x Dens(M)
for the group S-action on the space of wave functions C>°(M,C) given by
Y = (m,p) = (2Im(y dyp), )

is the inverse of the Madelung transform (p, 6) — 1 = \/pe'?, where
p > 0, in the following sense: if ) = \/pe'® then M(v)) = (p db, p).

Remark This might resolve T.C.Wallstrom's critique (1994) of
inequivalence between the Schrodinger equation and its hydrodynamic
form, requiring a quantization condition around zeros of :

consider the map ¢ — (m, p) for m = p d@ rather than ¢ — (d6, p).



Madelung and bouncing droplets?

Corollary: The Madelung transform provides a Kahler map, a strong
connection of QM and hydrodynamics.

Maybe this tighter
Madelung connection
could explain similarity of
bouncing droplets and

QM?




Beautiful pictures of pilot-wave hydrodynamics
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