The Mystery of Pentagram Maps

Boris Khesin (Univ. of Toronto)

Henan University
September 29, 2021

Mystery Itinerary

(1) Boussinesq and higher $K d V$ equations
(2) Pentagram map in 2D
(3) Pentagram maps in any dimension
4. Duality
(5) Numerical integrability and non-integrability

Geometry of the Boussinesq equation

Let $G: \mathbb{R} \rightarrow \mathbb{R} \mathbb{P}^{2}$ be a nondegenerate curve, i.e. G^{\prime} and $G^{\prime \prime}$ are not collinear $\forall x \in \mathbb{R}$.

Define evolution of $G(x)$ in time.

Geometry of the Boussinesq equation

Let $G: \mathbb{R} \rightarrow \mathbb{R} \mathbb{P}^{2}$ be a nondegenerate curve, i.e. G^{\prime} and $G^{\prime \prime}$ are not collinear $\forall x \in \mathbb{R}$.

Define evolution of $G(x)$ in time.
Given $\epsilon>0$ take the envelope L_{ϵ} of chords $[G(x-\epsilon), G(x+\epsilon)]$.
Expand the envelope L_{ϵ} in ϵ :

$$
L_{\epsilon}(x)=G(x)+\epsilon^{2} B_{G}(x)+O\left(\epsilon^{4}\right)
$$

Geometry of the Boussinesq equation

Let $G: \mathbb{R} \rightarrow \mathbb{R} \mathbb{P}^{2}$ be a nondegenerate curve, i.e. G^{\prime} and $G^{\prime \prime}$ are not collinear $\forall x \in \mathbb{R}$.

Reminder on envelopes:
Define evolution of $G(x)$ in time.
Given $\epsilon>0$ take the envelope L_{ϵ} of chords $[G(x-\epsilon), G(x+\epsilon)]$.
Expand the envelope L_{ϵ} in ϵ :

$$
L_{\epsilon}(x)=G(x)+\epsilon^{2} B_{G}(x)+O\left(\epsilon^{4}\right)
$$

In the expansion

$$
L_{\epsilon}(x)=G(x)+\epsilon^{2} B_{G}(x)+O\left(\epsilon^{4}\right)
$$

view ϵ^{2} as the time variable.

In the expansion

$$
L_{\epsilon}(x)=G(x)+\epsilon^{2} B_{G}(x)+O\left(\epsilon^{4}\right)
$$

view ϵ^{2} as the time variable.

Theorem (Ovsienko-Schwartz-Tabachnikov 2010)

The evolution equation $\partial_{t} G(x, t)=B_{G}(x, t)$ is equivalent to the Boussinesq equation $u_{t t}+2\left(u^{2}\right)_{x x}+u_{x x x x}=0$.

Remark. The Boussinesq equation is the (2,3)-equation of the Korteweg-de Vries hierarchy.

Joseph Boussinesq and shallow water

- the Boussinesq shallow water approximation (1872)
$u_{t t}+2\left(u^{2}\right)_{x x}+u_{x x x x}=0$
- he introduced the KdV equation (as a footnote, 1877)
$u_{t}+\left(u^{2}\right)_{x}+u_{x x x}=0$
- it was rediscovered by D.Korteweg and G.de Vries (1895)
M. Boussineso.

Joseph Boussinesq and shallow water

- the Boussinesq shallow water approximation (1872)
$u_{t t}+2\left(u^{2}\right)_{x x}+u_{x x x x}=0$
- he introduced the KdV equation (as a footnote, 1877)
$u_{t}+\left(u^{2}\right)_{x}+u_{x x x}=0$
- it was rediscovered by D.Korteweg and G.de Vries (1895)
M. Boussineso.

Mystery 1: Where is shallow water in curve envelopes?

Reminder on the KdV hierarchy

- Consider the space of vector-functions $\left\{\left(u_{0}, \ldots, u_{m-2}\right)(x)\right\}$ and view them as linear DOs

$$
R=\partial^{m}+u_{m-2}(x) \partial^{m-2}+u_{m-3}(x) \partial^{m-3}+\ldots+u_{1}(x) \partial+u_{0}(x)
$$

where $\partial^{j}:=d^{j} / d x^{j}$. Define its m th root $Q=R^{1 / m}$ as a formal pseudo-differential operator

$$
Q=\partial+a_{1}(x) \partial^{-1}+a_{2}(x) \partial^{-2}+\ldots
$$

such that $Q^{m}=R$. (Use the Leibniz rule $\partial f=f \partial+f^{\prime}$.)

- Define its fractional power $R^{k / m}=\partial^{k}+\ldots$ for any $k=1,2, \ldots$ and take its purely differential part $Q_{k}:=\left(R^{k / m}\right)_{+}$.

Example

for $k=1$ one has $Q_{1}=\partial$,
for $k=2$ one has $Q_{2}=\partial^{2}+(2 / m) u_{m-2}(x)$.

The $(k, m)-K d V$ equation is

$$
\frac{d}{d t} R=\left[Q_{k}, R\right] .
$$

Given order m, these evolution equations on $R=\partial^{m}+\ldots+u_{0}(x)$ commute for different $k=1,2, \ldots$ and form integrable hierarchies.

The $(k, m)-K d V$ equation is

$$
\frac{d}{d t} R=\left[Q_{k}, R\right] .
$$

Given order m, these evolution equations on $R=\partial^{m}+\ldots+u_{0}(x)$ commute for different $k=1,2, \ldots$ and form integrable hierarchies.

Example

- the Korteweg-de Vries equation $u_{t}+u u_{x}+u_{x x x}=0$ is the "(3,2)-KdV equation". It is the 3rd evolution equation on Hill's operator $R=\partial^{2}+u(x)$ of order $m=2$.
- the Boussinesq equation $u_{t t}+2\left(u^{2}\right)_{x x}+u_{x x x x}=0$ is the " $(2,3)-\mathrm{KdV}$ equation". It is the $2 n d$ evolution equation on operator $R=\partial^{3}+u(x) \partial+v(x)$ of order $m=3$, after exclusion of v.

In higher dimensions...

Let $G: \mathbb{R} \rightarrow \mathbb{R} P^{d}$ be a nondegenerate curve, i.e. $\left(G^{\prime}, G^{\prime \prime}, \ldots, G^{(d)}\right)$ are linearly independent $\forall x \in \mathbb{R}$.

Given $\epsilon>0$ and reals $\varkappa_{1}<\varkappa_{2}<\ldots<\varkappa_{d}$ such that $\sum_{j} \varkappa_{j}=0$ define hyperplanes $P_{\epsilon}(x)=\left[G\left(x+\varkappa_{1} \epsilon\right), \ldots, G\left(x+\varkappa_{d} \epsilon\right)\right]$.

In higher dimensions...

Let $G: \mathbb{R} \rightarrow \mathbb{R} \mathbb{P}^{d}$ be a nondegenerate curve, i.e. $\left(G^{\prime}, G^{\prime \prime}, \ldots, G^{(d)}\right)$ are linearly independent $\forall x \in \mathbb{R}$.

Given $\epsilon>0$ and reals $\varkappa_{1}<\varkappa_{2}<\ldots<\varkappa_{d}$ such that $\sum_{j} \varkappa_{j}=0$ define hyperplanes $P_{\epsilon}(x)=\left[G\left(x+\varkappa_{1} \epsilon\right), \ldots, G\left(x+\varkappa_{d} \epsilon\right)\right]$.

Example

In $\mathbb{R P}^{3}$ above $\varkappa_{j}=-1,0,1$
Let $L_{\epsilon}(x)$ be the envelope curve for the family of hyperplanes $P_{\epsilon}(x)$ for a fixed ϵ.

Reminder on envelopes of plane families

The envelope condition means that for each x the point $L_{\epsilon}(x)$ and the derivative vectors $L_{\epsilon}^{\prime}(x), \ldots, L_{\epsilon}^{(d-1)}(x)$ belong to the plane $P_{\epsilon}(x)$.

Expand the envelope in ϵ :

$$
L_{\epsilon}(x)=G(x)+\epsilon^{2} B_{G}(x)+O\left(\epsilon^{3}\right)
$$

Theorem (K.-Soloviev 2016)

The evolution equation $\partial_{t} G(x, t)=B_{G}(x, t)$ is equivalent to the $(2, d+1)-K d V$ equation for any choice of $\varkappa_{1}, \ldots, \varkappa_{d}$. In particular, it is an integrable infinite-dimensional system.

Expand the envelope in ϵ :

$$
L_{\epsilon}(x)=G(x)+\epsilon^{2} B_{G}(x)+O\left(\epsilon^{3}\right)
$$

Theorem (K.-Soloviev 2016)

The evolution equation $\partial_{t} G(x, t)=B_{G}(x, t)$ is equivalent to the $(2, d+1)$-KdV equation for any choice of $\varkappa_{1}, \ldots, \varkappa_{d}$. In particular, it is an integrable infinite-dimensional system.

Remark. If $\sum_{j} \varkappa_{j} \neq 0$, then the expansion is

$$
L_{\epsilon}(x)=G(x)+\epsilon G^{\prime}(x)+O\left(\epsilon^{2}\right)
$$

and the evolution equation $\partial_{t} G(x, t)=G^{\prime}(x, t)$ is equivalent to the $(1, d+1)$-KdV equation $\frac{d}{d t} R=[\partial, R]$.

Expand the envelope in ϵ :

$$
L_{\epsilon}(x)=G(x)+\epsilon^{2} B_{G}(x)+O\left(\epsilon^{3}\right)
$$

Theorem (K.-Soloviev 2016)

The evolution equation $\partial_{t} G(x, t)=B_{G}(x, t)$ is equivalent to the $(2, d+1)$-KdV equation for any choice of $\varkappa_{1}, \ldots, \varkappa_{d}$. In particular, it is an integrable infinite-dimensional system.

Remark. If $\sum_{j} \varkappa_{j} \neq 0$, then the expansion is

$$
L_{\epsilon}(x)=G(x)+\epsilon G^{\prime}(x)+O\left(\epsilon^{2}\right)
$$

and the evolution equation $\partial_{t} G(x, t)=G^{\prime}(x, t)$ is equivalent to the $(1, d+1)$-KdV equation $\frac{d}{d t} R=[\partial, R]$.
Mystery 2: Are there higher ($k, d+1$)- KdV equations for all $k \geq 3$ hidden in the geometry of envelopes of space curves?

Relation of curves and differential operators

How to associate a curve $G \subset \mathbb{R P}^{d}$ to a differential operator

$$
R=\partial^{d+1}+u_{d-1}(x) \partial^{d-1}+\ldots+u_{0}(x) \quad ?
$$

- Consider the linear differential equation $R \psi=0$. Take any fundamental system of solutions

$$
\Psi(x):=\left(\psi_{1}(x), \psi_{2}(x), \ldots, \psi_{d+1}(x)\right)
$$

Regard it as a map $\Psi: \mathbb{R} \rightarrow \mathbb{R}^{d+1}$.

Relation of curves and differential operators

How to associate a curve $G \subset \mathbb{R P}^{d}$ to a differential operator

$$
R=\partial^{d+1}+u_{d-1}(x) \partial^{d-1}+\ldots+u_{0}(x) \quad ?
$$

- Consider the linear differential equation $R \psi=0$.

Take any fundamental system of solutions

$$
\Psi(x):=\left(\psi_{1}(x), \psi_{2}(x), \ldots, \psi_{d+1}(x)\right)
$$

Regard it as a map $\Psi: \mathbb{R} \rightarrow \mathbb{R}^{d+1}$.

- Pass to the corresponding homogeneous coordinates:

$$
G(x):=\left(\psi_{1}(x): \psi_{2}(x): \ldots: \psi_{d+1}(x)\right) \in \mathbb{R P}^{d}, \text { i.e. } G: \mathbb{R} \rightarrow \mathbb{R P}^{d}
$$

We associated a curve $G \subset \mathbb{R P}^{d}$ to a linear differential operator R. Moreover,

- Wronskian $\Psi(x) \neq 0 \forall x \Longleftrightarrow G(x)$ is nondegenerate $\forall x$, i.e. $\left(G^{\prime}, G^{\prime \prime}, \ldots, G^{(d)}\right)$ are linearly independent for all x.

We associated a curve $G \subset \mathbb{R}^{d}$ to a linear differential operator R. Moreover,

- Wronskian $\Psi(x) \neq 0 \forall x \Longleftrightarrow G(x)$ is nondegenerate $\forall x$, i.e. $\left(G^{\prime}, G^{\prime \prime}, \ldots, G^{(d)}\right)$ are linearly independent for all x.
- Solution set Ψ is defined modulo $S L_{d+1}$ transformations. The curve $G \subset \mathbb{R}^{d}$ is defined modulo $P S L_{d+1}$ (i.e. projective) transformations.

We associated a curve $G \subset \mathbb{R P}^{d}$ to a linear differential operator R. Moreover,

- Wronskian $\Psi(x) \neq 0 \forall x \Longleftrightarrow G(x)$ is nondegenerate $\forall x$, i.e. $\left(G^{\prime}, G^{\prime \prime}, \ldots, G^{(d)}\right)$ are linearly independent for all x.
- Solution set Ψ is defined modulo $S L_{d+1}$ transformations. The curve $G \subset \mathbb{R P}^{d}$ is defined modulo $P S L_{d+1}$ (i.e. projective) transformations.
- For differential operator R with periodic coefficients, solutions Ψ of $R \Psi=0$ (and hence, the curve G) are quasiperiodic: there is a monodromy $M \in S L_{d+1}$ such that $\Psi(x+2 \pi)=M \Psi(x)$ for all $x \in \mathbb{R}$.

Defining the pentagram map (R.Schwartz 1992)

The pentagram map takes a (convex) n-gon $P \subset \mathbb{R} \mathbb{P}^{2}$ into a new polygon $T(P)$ spanned by the "shortest" diagonals of P (modulo projective equivalence):

Defining the pentagram map (R.Schwartz 1992)

The pentagram map takes a (convex) n-gon $P \subset \mathbb{R P}^{2}$ into a new polygon $T(P)$ spanned by the "shortest" diagonals of P (modulo projective equivalence):

- $T=i d$ for $n=5$
- $T^{2}=i d$ for $n=6$
- T is quasiperiodic for $n \geq 7$

Hidden integrability?

Why $T=i d$ for a pentagon?

A pentagon in $\mathbb{R} \mathbb{P}^{2}$ is fully defined by the cross-ratios at its vertices.

$$
C R\left(z_{1}, z_{2}, z_{3}, z_{4}\right):=\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}
$$

Cross-ratio $C R$ is a projective invariant of 4 points on $\mathbb{R P}^{1}$ or 4 lines through one vertex in $\mathbb{R P}^{2}$.

Now note:

$$
\begin{aligned}
& C R\left(4 \text { lines at } p_{1}\right) \\
= & C R\left(p_{2}, p_{4}^{\prime}, p_{3}^{\prime}, p_{5}\right) \\
= & C R\left(4 \text { lines at } p_{1}^{\prime}\right)
\end{aligned}
$$

A Pentagram map?

THE FIVE ELEMENTS

> The Pentagram dates back to Pythagoras, the Greek mathematician and philosopher., He held that the number five was the number of Man because of the five-fold division of the body. He used the Pentagram to symbolize the five Elements that made up man, Earth, Air, Fire, Water and Spirit.

Or, rather, a Pentagon map?

Or, rather, a Pentagon map?

Hum3D

Or, rather, a Pentagon map?

Properties of the pentagram map

- The integrability was proved for closed and twisted (i.e. with fixed monodromy) polygons in 2D (Ovsienko-Schwartz-Tabachnikov 2010, Soloviev 2012).
- There are first integrals, an invariant Poisson structure, and a Lax form.
- Pentagram map is related to cluster algebras, frieze patterns, etc.
- Its continuous limit is the Boussinesq equation.
- Extension to corrugated polygons, polygonal spirals, etc.

Properties of the pentagram map

- The integrability was proved for closed and twisted (i.e. with fixed monodromy) polygons in 2D (Ovsienko-Schwartz-Tabachnikov 2010, Soloviev 2012).
- There are first integrals, an invariant Poisson structure, and a Lax form.
- Pentagram map is related to cluster algebras, frieze patterns, etc.
- Its continuous limit is the Boussinesq equation.
- Extension to corrugated polygons, polygonal spirals, etc.

How to generalize to higher dimensions?

- No generalizations to polyhedra: many choices of hyperplanes passing through neighbours of any given vertex.

Properties of the pentagram map

- The integrability was proved for closed and twisted (i.e. with fixed monodromy) polygons in 2D (Ovsienko-Schwartz-Tabachnikov 2010, Soloviev 2012).
- There are first integrals, an invariant Poisson structure, and a Lax form.
- Pentagram map is related to cluster algebras, frieze patterns, etc.
- Its continuous limit is the Boussinesq equation.
- Extension to corrugated polygons, polygonal spirals, etc.

How to generalize to higher dimensions?

- No generalizations to polyhedra: many choices of hyperplanes passing through neighbours of any given vertex.
- Diagonal chords of a space polygon may be skew and do not intersect in general.

Example and integrability of a pentagram map in 3D

For a generic n-gon $\left\{v_{k}\right\} \subset \mathbb{R P}^{3}$, for each k consider the two-dimensional "short-diagonal plane" $P_{k}:=\left[v_{k-2}, v_{k}, v_{k+2}\right]$.

Then the space pentagram map $T_{\text {sh }}$ is the intersection point

$$
T_{s h} v_{k}:=P_{k-1} \cap P_{k} \cap P_{k+1} .
$$

Example and integrability of a pentagram map in 3D

For a generic n-gon $\left\{v_{k}\right\} \subset \mathbb{R} \mathbb{P}^{3}$, for each k consider the two-dimensional "short-diagonal plane" $P_{k}:=\left[v_{k-2}, v_{k}, v_{k+2}\right]$.

Then the space pentagram map $T_{\text {sh }}$ is the intersection point

$$
T_{s h} v_{k}:=P_{k-1} \cap P_{k} \cap P_{k+1}
$$

Theorem (K.-Soloviev 2012)

The 3D short-diagonal pentagram map is a discrete integrable system (on a Zariski open subset of the complexified space of closed n-gons in 3D modulo projective transformations $P S L_{4}$). It has a Lax representation with a spectral parameter. Invariant tori have dimensions 3【n/2」-6 for odd n and $3(n / 2)-9$ for even n.

Twisted polygons

Remark. There is a version for twisted space n-gons, where vertices are related by a fixed monodromy $M \in P S L_{4}: v_{k+n}=M v_{k}$ for any $k \in \mathbb{Z}$. The dimension of the space of closed n-gons modulo projective equivalence is $3 n-\operatorname{dim} P S L_{4}=3 n-15$. This dimension for twisted n-gons is $3 n-15+15=3 n$.

Analogy and coordinates on the spaces of polygons

A differential operator $R=\partial^{d+1}+\ldots+u_{0}(x)$ defines a "solution curve" $\Psi: \mathbb{R} \rightarrow \mathbb{R}^{d+1}$ such that $\Psi^{(d+1)}+u_{d-1}(x) \Psi^{(d-1)}+\ldots+u_{0}(x) \Psi=0$ $\forall x \in \mathbb{R}$, which defines a nondegenerate curve $G: \mathbb{R} \rightarrow \mathbb{R} \mathbb{P}^{d}(\bmod$ projective equivalence).

A difference operator defines a (twisted) "polygonal curve" $V: \mathbb{Z} \rightarrow \mathbb{R}^{d+1}$ such that $V_{i+d+1}+a_{i, d} V_{i+d}+\ldots+a_{i, 1} V_{i+1} \pm V_{i}=0$ $\forall i \in \mathbb{Z}$, which defines a generic twisted polygon $v: \mathbb{Z} \rightarrow \mathbb{R P}^{d}(\bmod$ projective equivalence).

As $n \rightarrow \infty$ a generic n-gon $v_{i}, i \in \mathbb{Z}$ in $\mathbb{R P}^{d}$ "becomes" a nondegenerate curve $G(x), x \in \mathbb{R}$ in $\mathbb{R} \mathbb{P}^{d}$.

Pentagram maps in any dimension

For a generic n-gon $\left\{v_{k}\right\} \subset \mathbb{R P}^{d}$ and any fixed ($d-1$)-tuple $I=\left(i_{1}, \ldots, i_{d-1}\right)$ of "jumps" $i_{\ell} \in \mathbb{N}$ define an I-diagonal hyperplane P_{k}^{\prime} by
$P_{k}^{\prime}:=\left[v_{k}, v_{k+i_{1}}, v_{k+i_{1}+i_{2}}, \ldots, v_{k+i_{1}+\ldots+i_{d-1}}\right]$.

Example

The diagonal hyperplane P_{k}^{\prime} for the jump tuple $I=(3,1,2)$ in $\mathbb{R} \mathbb{P}^{4}$.

Pentagram maps in any dimension

For a generic n-gon $\left\{v_{k}\right\} \subset \mathbb{R P}^{d}$ and any fixed $(d-1)$-tuple $I=\left(i_{1}, \ldots, i_{d-1}\right)$ of "jumps" $i_{\ell} \in \mathbb{N}$ define an I-diagonal hyperplane P_{k}^{\prime} by
$P_{k}^{\prime}:=\left[v_{k}, v_{k+i_{1}}, v_{k+i_{1}+i_{2}}, \ldots, v_{k+i_{1}+\ldots+i_{d-1}}\right]$.

Example

The diagonal hyperplane P_{k}^{\prime} for the jump tuple $I=(3,1,2)$ in $\mathbb{R P}^{4}$.

Pentagram map T^{l} in $\mathbb{R} \mathbb{P}^{d}$ is

$$
T^{\prime} v_{k}:=P_{k}^{\prime} \cap P_{k+1}^{\prime} \cap \ldots \cap P_{k+d-1}^{\prime}
$$

Integrability in higher dimensions

Theorem

The pentagram map T^{\prime} on (projective equivalence classes of) n-gons in $\mathbb{R P}^{d}$ is an integrable system, i.e. it admits a Lax representation with a spectral parameter, for

- the "short-diagonal case", $I=(2,2, \ldots, 2)$; ($d=2$ O.-S.-T., $d=3$ K.-S., $d \geq 4$ K.-S.+G.Mari-Beffa)
- the "deep-dented case", $I=(1, \ldots, 1, p, 1, \ldots, 1)$ for any $p \in \mathbb{N}$. (any d K.-S.)

Integrability in higher dimensions

Theorem

The pentagram map T^{\prime} on (projective equivalence classes of) n-gons in $\mathbb{R P}^{d}$ is an integrable system, i.e. it admits a Lax representation with a spectral parameter, for

- the "short-diagonal case", $\boldsymbol{I}=(2,2, \ldots, 2)$; ($d=2$ O.-S.-T., $d=3$ K.-S., $d \geq 4$ K.-S.+G.Mari-Beffa)
- the "deep-dented case", $I=(1, \ldots, 1, p, 1, \ldots, 1)$ for any $p \in \mathbb{N}$. (any d K.-S.)

Remark. In all cases, the continuous limit $n \rightarrow \infty$ is the integrable ($2, d+1$)-KdV equation!

Example

A "deep-dented" diagonal hyperplane for $I=(1,1,3,1)$ in $\mathbb{R} \mathbb{P}^{5}$:

The corresponding pentagram map T^{1} is defined by intersecting 5 consecutive hyperplanes P_{k} for each vertex, and it is integrable!

Theorem (Izosimov 2018)

The pentagram map in $\mathbb{R} P^{d}$ defined by $T v_{k}:=P_{k}^{+} \cap P_{k}^{-}$intersecting two planes $P^{ \pm}=\left(v_{k+j}, j \in R^{ \pm}\right)$of complementary dimensions in $\mathbb{R} P^{d}$, where $R^{ \pm}$are two m-arithmetic sequences, is a discrete integrable system. These pentagram maps can be obtained as refactorizations of difference operators, have natural Lax forms and invariant Poisson structures.

Corollary on long-diagonal maps

Corollary (Izosimov-K. 2020)

1) The (dual) long-diagonal pentagram map T_{m}^{\prime} in $\mathbb{R} P^{d}$ defined by the jump tuple $I=(m, \ldots, m, p, m, \ldots, m)$ (or, more generally, for the union of two m-arithmetic sequences), and $T_{m}^{\prime}:=P_{k} \cap P_{k+m} \cap \ldots \cap P_{k+m(d-1)}$, is a completely integrable system, i.e. it admits a Lax representation with a spectral parameter and invariant Poisson structure.
2) The continuous limit is the $(2, d+1)-K d V$ equation for all those cases.

Remark. Such long-diagonal pentagram maps T_{m}^{\prime}, along with their duals, include all known integrable cases!

Duality

Example

The 2D pentagram map is $P \rightarrow T(P)$, i.e. T uses "step-2" diagonals and intersects them consecutively, $T:=T^{(2)(1)}$.

The inverse map $T(P) \rightarrow P$ uses sides, or "step-1" diagonals, and intersects them through one, $T^{-1}=T^{(1)(2)}$.

$$
\left(T^{(2)(1)}\right)^{-1}=T^{(1)(2)} .
$$

More generally ...

Duality

- for $(d-1)$-tuple of jumps $I=\left(i_{1}, \ldots, i_{d-1}\right)$, the I-diagonal plane is $P_{k}^{\prime}:=\left[v_{k}, v_{k+i_{1}}, v_{k+i_{1}+i_{2}}, \ldots, v_{k+i_{1}+\ldots+i_{d-1}}\right]$.
- for $(d-1)$-tuple of intersections $J=\left(j_{1}, \ldots, j_{d-1}\right)$, the pentagram $\operatorname{map} T^{I, J}$ in $\mathbb{R} \mathbb{P}^{d}$ is

$$
T^{I, J} v_{k}:=P_{k}^{\prime} \cap P_{k+j_{1}}^{\prime} \cap \ldots \cap P_{k+j_{d-1}}^{\prime} .
$$

Example

- The 2D pentagram map is $T^{(2)(1)}$ for $I=(2)$ and $J=(1)$.
- The short-diagonal map in 3D has $I=(2,2)$ and $J=(1,1)$.
- Pentagram map T^{\prime} has $I=\left(i_{1}, \ldots, i_{d-1}\right)$ and $J=(1, \ldots, 1)$.

Integrability of $T^{I, J}$ for general $/$ and J is unknown!

Duality

Let $I^{*}=\left(i_{d-1}, \ldots, i_{1}\right)$ be the $(d-1)$-tuple I in the opposite order.

Theorem (K.-Soloviev 2015)

There is the following duality for the pentagram maps $T^{I, J}$:

$$
\left(T^{I, J}\right)^{-1}=T^{J^{*}, \iota^{*}} .
$$

Example

For the 2D pentagram map:

$$
\left(T^{(1)(2)}\right)^{-1}=T^{(2)(1)} .
$$

Height of a rational number and polygon

The height of a rational number $a / b \in \mathbb{Q}$ in the lowest terms is $h t(a / b)=\max (|a|,|b|)$. Use projectively-invariant (cross-ratio) coordinates $\left(x_{i}, y_{i}, z_{i}\right)$ on the space of n-gons in $\mathbb{Q P}^{3}$ (i.e., having only rational values of coordinates).

The height of an n-gon P is

$$
H(P):=\max _{0 \leq i \leq n-1} \max \left(h t\left(x_{i}\right), h t\left(y_{i}\right), h t\left(z_{i}\right)\right) .
$$

Numerical experiments in 3D

We trace how fast the height of an initial 11-gon grows with the number of iterates of different pentagram maps in 3D.

Fix a twisted 11 -gon in $\mathbb{Q P}^{3}$ by specifying vectors in \mathbb{Q}^{4}. Their coordinates are randomly distributed in $[1,10]$.

Numerical experiments in 3D

We trace how fast the height of an initial 11-gon grows with the number of iterates of different pentagram maps in 3D.

Fix a twisted 11 -gon in $\mathbb{Q P}^{3}$ by specifying vectors in \mathbb{Q}^{4}.
Their coordinates are randomly distributed in $[1,10]$.
Observed: a sharp contrast in the height growth for different maps. However, the borderline between numerically integrable and non-integrable cases is difficult to describe.
We group those cases separately.

Numerically integrable cases

First study the short-diagonal map $T_{\text {sh }}$ in 3D, which is known to be integrable.
After $t=8$ iterations, the height of the twisted 11 -gon in $\mathbb{Q} \mathbb{P}^{3}$ becomes of the order of 10^{500} :

"Polynomial growth" of $\log H$ for the integrable pentagram map $T_{\text {sh }}$ in 3D as a function of t.

Numerically integrable cases (cont'd)

The height also grows moderately fast for the integrable dented maps $T^{(2,1)}$ and $T^{(1,2)}$, reaching the value of the order of 10^{800}.

Similar moderate growth is observed for the (integrable) deep-dented $\operatorname{map} T^{(1,3)}$ in 3D: the height remains around 10^{1000}.

More numerically integrable cases:

Map $T^{I, J}$	Name of pent. map	Height at $t=8$
$T_{\text {sh }}:=T^{(2,2),(1,1)}$	short-diagonal	10^{500}
$T^{(2,1)}:=T^{(2,1),(1,1)}$	dented	10^{800}
$T^{(3,1)}:=T^{(3,1),(1,1)}$	deep-dented	10^{1000}
$T^{(2,2),(1,2)}$	long-diagonal	10^{1000}
$T^{(1,2),(1,2)}$		10^{2000}
$T^{(1,3),(1,3)}$		10^{3000}
$T^{(2,3),(2,3)}$		10^{3000}

Observation - Conjecture. The pentagram maps $T^{I, I}$, i.e. those with $I=J$, are integrable.

Numerically non-integrable cases

The first case not covered by theorems: for the map $T^{(2,3)}$ after 8 iterations the height is already of order $10^{10^{7}}$.

Linear growth of $\log \log H$ for the map $T^{(2,3)}$ in 3D indicates super-fast growth of its height and apparent non-integrability.

More numerically non-integrable cases:

Map $T^{I, J}$	Height at $t=8$
$T^{(1,2),(3,1)}$	$10^{3 \cdot 10^{7}}$
$T^{(1,2),(1,3)}$	$10^{3 \cdot 10^{\prime}}$
$T^{(2,3)}:=T^{(2,3),(1,1)}$	$10^{10^{7}}$
$T^{(2,4)}:=T^{(2,4),(1,1)}$	$10^{10^{7}}$
$T^{(3,3)}:=T^{(3,3),(1,1)}$	$10^{10^{7}}$

More numerically non-integrable cases:

Map $T^{I, J}$	Height at $t=8$
$T^{(1,2),(3,1)}$	$10^{3 \cdot 10^{7}}$
$T^{(1,2),(1,3)}$	$10^{3 \cdot 10^{\prime}}$
$T^{(2,3)}:=T^{(2,3),(1,1)}$	$10^{10^{7}}$
$T^{(2,4)}:=T^{(2,4),(1,1)}$	$10^{10^{7}}$
$T^{(3,3)}:=T^{(3,3),(1,1)}$	$10^{10^{7}}$

More Mysteries / Open Problems:

- Prove non-integrability in those cases.
- Describe the border of integrability and non-integrability.

Intricate border of integrable and non-integrable cases:

Several references

- R.Schwartz 1992, 2001, 2008
- V.Ovsienko-R.Schwartz-S.Tabachnikov 2010, 2012
- M.Glick 2011, 2015
- M.Gekhtman-M.Shapiro-S.Tabachnikov-A.Vainshtein 2012, 2016
- F.Soloviev 2013
- B.Khesin-F.Soloviev 2013, 2015, 2016
- G.Mari-Beffa 2015
- M.Glick-P.Pylyavskyy 2016
- A.Izosimov 2018, 2019
- A.Izosimov-B.Khesin 2020

THANK YOU!

