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ASYMPTOTIC COMPLETENESS

I.M. Sigal

Dedicated to the memory of F.A. Berezin

Apology. Little more than 20 years ago my Ph.D. adviser, F.A. Berezin, suggested to
me to look into Scattering Theory. In his own words I did not have time to do anything on
my own but it would keep me off the streets. I would get myself an education. For better
or worse it did keep me off the streets, but 20 years later I am still an amateur. In the
first 10 years of my preoccupation with Scattering Theory, progress was very limited and
extremely painful. In the last decade it was rather remarkable, but too fast too keep track
of unless one devoted all one’s time to the subject. I did not. So this loosely written review
reflects my bumpy ride. It sketches some general notions which I find fundamental, not
only for scattering but also outside of it. Unfortunately, I understand them only partially.
I omit details, because I either find them boring or do not understand them well enough to
find their proper place in the system of things. I dedicate this review to Felix Berezin. To
his launching me on this tough subject, I owe many exhilarating moments of my scientific
journey.

Acknowledgement. With the exception of the last section this review keeps close
to parts of the talks on mathematical problems in Quantum Mechanics I have given at
MIT, Princeton, ETH and Jerusalem. I am grateful to the audiences for remarks and
encouragement. I was lucky to work on the scattering theory in collaboration with Avy
Soffer. My understanding of that theory which I will try to convey below is formed by this
collaboration.

Problem. Scattering theory studies asymptotic behaviour of the time-dependent

Schrodinger equation

as t — d00. Here v is a differentiable path or orbit in the state space L*(X), where X is

the configuration space of the system in question. Usually, it is R*N or a subspace thereof

corresponding to the center-of-mass frame.

H = -A+V(x),
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the Schrodinger operator on L?(X), with A being a Laplace-Beltrami operator on X (the
kinetic energy operator) and V(z), a real function on X (the potential). We assume that
V(x) is not too singular so that H is self-adjoint (see Kato, 1953).

The self-adjointness of H is equivalent to the existence of unitary dynamics, i.e. the
existence of global solutions to the Cauchy problem for (1) satisfying ||¢¢|| = const (see
[Simon, 1976]). Once this is established the next problem is the classification of solutions
(orbits) according to their asymptotic behaviour as t — +oo. It is called asymptotic
completeness. It is the main mathematical problem of Scattering Theory. It was first
attacked just a few years after the birth of Quantum Mechanics. While during the next
60 years there was a rather satisfactory progress on the one-two body problem, the many-
body problem alluded researchers and only limited progress was made. However, in the
last decades, a remarkable development took place in this area. In this article I sketch the
main highlights of this process.

I concentrate on the many body asymptotic completeness. To this end we consider a
system consisting of N v-dimensional particles. The configuration space of such a system

in the center-of-mass frame is

X = {ZEERVN|Z?TLZ‘.TZ‘:0}.

N
Here * = (2y,...,2n). We equip X with the inner product (z,y) = > m;z;y;. The
=1

kinematics of many particles in R” translates into geometry of X. This was understood by
many people (see e.g. Zhislin, 1960, Enss, 1977, Simon, 1977, Sigal, 1982, 1987). Passing
from kinematic to geometric language, which is crucial in the latest constructions in the
many-body scattering theory was suggested by Agmon, 1982. A brief kinematic-geometric

dictionary is given below.



Kinematics

N particles
V(z) = 2 Vij(ei — )

N >4

Break-up

Fig. 3. Break-up: physical picture

Geometry
System, X, of subspaces of X

V(z) — 0 as || — oo,

except along the subspaces from X
X=9¢

Subspaces from X intersect

only at the origin

Fig. 1

No restrictions (only on generations)

Cone in X subspaces

from X

Fig. 2. Break-up: geometric representation

In the kinematic language asymptotic completeness states that as |t| — oo, the system in

question breaks up into independent, freely moving, stable subsystems. In the geometrical

language one says that the system’s motion is a superposition of a free motion on a ray

starting at the origin (= the free motion of the centers-of-mass of subsystems) and a

bounded motion in the transversal direction (stable internal motion of the subsystems):

YeX

(free motion of the center-of-mass)

Fig. 4. Free motion of stable clusters

In rigorous terms, asymptotic completeness states that for any orbit ¢; (i.e. a solution to
(1) with an L? initial condition) there are py € L*(Y) for all Y € X, s.t.

o — Y yr@e v Ay — 0

(Y7wa_)



as t — +oo (and similarly for ¢ — —o0). Here Ay is the Laplace-Beltrami operator on
Y € X, ¢y 1 is an eigenfunction (labeled by ¢!) of Hy . (the “trace of H on the subspace
Y17, to be defined later) with an eigenvalue ey-1 and the sum runs over all pairs (Y, ¢y 1),
where YV € X and ¢y .1 is an eigenfunction of Hy 1. The collection of such pairs can be
called the boundary, Os, of X at oo. Thus this boundary is determined by a certain type

of geometry of X but also by dynamical data of our system. Now,
HyJ_ - —AyJ_ —|— VyJ_

on L#(Y1), where, as before, Ay 1 is the Laplace-Beltrami operator on Y+ and Vy 1 (zy 1)
is the limit of V(&) as |xy| — oo while #y 1 is kept fixed. Here zy is the projection of

onto Y, etc.

Conditions on the potential. In the kinematic language one imposes restrictions

on the pair potentials, say, that for y € R” in a neighbourhood of infinity

Vii(y) = O(ly|™")

for some p > 0. Behaviour of V;; in a bounded part of R” is not important as long as H
is self-adjoint. In the geometrical language one way to formulate conditions on V(&) is to
assume that for each Y € X

VyV(z) = O(Jz|™") on any closed cone in

Y\(J 2)

ZCY

again for some pu > 0.

Result and Brief History. The main result I would like to report is
Theorem. Let u > /3 — 1. Then asymptotic completeness holds.

Careful investigation of scattering in quantum systems began with the birth of Quan-
tum Mechanics. The mathematical methods used date back to works of Lord Rayleigh
and A. Sommerfeld on wave equation in the 19th and the beginning of the 20th century.
Since then Scattering Theory counted among the most active areas among physicists and
mathematicians with early important works by W. Heisenberg, J. Schwinger, H. Eckstein,
S. Weinberg, W. Hunziker, T. Kato, S. Birman, Ya. Povzner, T. Ikebe and K. Friedrichs,
among others. A major breakthrough was made by L.D. Faddeev in 1963, who solved the
three body problem. While the one-body problem has undergone a significant develop-

ment, especially in works of S. Agmon and L. Hormander, the events in the many-body
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case took a slow turn and concentrated, with the exception of two papers, K. Hepp, 1969
and R. Lavine, 1973, on the improvement of the three-body result.

The situation changed with the works of V. Enss in 1978, who introduced phase-space
(or micro-local in the terminology of PDE’s) methods into the scattering theory and of E.
Mourre in 1981, who introduced the method of local positive commutators.

Merging these two sets of ideas and developing the method which can be loosely termed
as of microlocally positive commutators, .M. Sigal and A. Soffer, 1987, have proved asymp-
totic completeness for N-body short-range (i.e. with g > 1) systems. Finally, extending
microlocal analysis to include also so-called asymptotic projections, J. Derezinski, 1993
and I.M. Sigal and A. Soffer, 1993b have proved asymptotic completeness for long-range
systems with g > 1 and g > /3 — 1, respectively (see also L. Zelinski, 1992). Powerful
ideas of G.-M. Graf, 1990, and, in the latter case, of D. Yafaev, 1993, played important

roles in the proofs.

Propagation Set. Now I will describe the key notion which guides the proof of
asymptotic completeness and which I believe can be useful outside the problem at hand.
The propagation set plays the role for the Schrodinger equation similar to the role wave
front set for the wave equation.

Consider a class of symbols on the space-time X xR (endowed into the usual symplectic
form dx A dp — dE A dt) satisfying the estimates

100,000, el < Casl(a, )71
on any set which is compact in p and E. These are classical symbols in which role of the
coordinate and momentum are interchanged. Now for any ¢ € L* (R, L*(X )) we define
its propagation set by

PS(¢) = N char ¢ .

||¢¢||L2(%)<Oo

Here the intersection is taken over pseudodifferential operators ¢ with symbols described
above and satisfying the estimate indicated and char ¢, the characteristic set of ¢, is the null
set of its symbol. The inequality under the intersection sign means that ||<;51/)||%2(dr), the
probability that v is localized in supp ¢, vanishes in some probabilistic sense as |t| — oo.

In other words, as |t| — oo, the state 1) concentrates with rarer and rarer exceptions on

PS(v).

For each point at oo, w = (Y, ¢y 1), we introduce the classical Hamiltonian function
hw(z) = AyL —|—hy<z) ,

where z € T*Y, Ay 1 1s the eigenvalue of Hy 1 corresponding to the eigenfunction oy 1
and hy, the “trace of h along Y”. is given by

1
hy(z) = §IPY|2+VY($Y),
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where py and xy are projections of p on Y’ and x on Y, respectively, and Vy(z) =
V(x) — Vyr(z). Recall that the bicharacteristics of h,, are just its classical trajectories,
i.e. the solutions of the Hamiltonian equations

Oh., Ohy,

ap 7 ox 1 ¥
Theorem. Let > /3 — 1 and let ¢ solve (1). Then PS(v)) consists of asymptotics to

the bicharacteristics of h,, for w € 0.

Discussion. The Hamiltonians h,,, w € O, play the role of the principal symbol.
These Hamiltonians as well as their bicharacteristics are partially quantized. A bicharac-
teristic for h,, with w = (Y, ¢y 1) describes the free (classical) motion along Y and bounded
(quantum) motion in Y+ (see Fig. 1).

The motion along partially quantized bicharacteristics is unstable. In a random mo-
ments of time system jump from one bicharacteristic onto another. That is why the
convergence of ||p¥| r2¢az) to zero as |t| — oo, for the symbol, , of ¢ supported outside
PS(v), is in certain average. We expect that for ¢ supported on parts of the phase space
outside of PS(¢), through which tunnelling between different bicharacteristics is not ruled
out by the energy or similar considerations, there is not uniform decay of ||¢t||12(4s) as
|t| — oo, i.e. the estimate ||¢1/)||L2(d(zti) < oo cannot be sharpened.

The theorem above was first proven in I.M. Sigal and A. Soffer, 1987 for g > 0 but

only for the part of the phase-space away from the critical set

U {=1VRi(z) =0}, (2)

W€D
w>Y

where, for w = (Z,¢41), w > Y means Z DY and h}, stands for A . + %|§§|2 + Iz(z))
with ¢ and z} standing for the projections of ¢ and # on Z' © Y’ and on Z &Y,
respectively. This result sufficed to prove asymptotic completeness for the short-range
forces, i.e. for g > 1. In the long-range case, i.e. for p < 1, one has to control PS(¢) near
the critical set (which corresponds to the case of multiple characteristics in the problem of
propagation of singularities). Moreover, near the critical set not only the bicharacteristic
motion becomes rather complicated (in particular, not ballistic), but the microlocal nature

of problem breaks down, the quantum phenomena begins playing the crucial role.

Asymptotic observables. To deal with these problems one introduces fractional
time scales and uses, in addition, asymptotic projection operators (or asymptotic observ-
ables) which allow one to localize in the space T*X ® L?(X), rather than in T*X or in
T*(X x R) alone.



I explain briefly what is going on here. To begin with in order for induction in
the number of particles stay in the same class of Hamiltonians we consider more general
Hamiltonians of the form H(t) = H + W(x,t), where H is an N-particle Schrodinger

operator described above and W (x,t) is a real smooth function satisfying
|a(ar,t)W(m7t)| S C’a<t>_ﬂ_|a| )

where p is the same as in the conditions on V (), though this is not necessary. Let U(t)
be the evolution group (from time 0 to time t) generated by H(t). For a family, B, of

self-adjoint operators, B; (= observables), we introduce the asymptotic cut-off functions

FEB) = lim UMFBUW) |
if the limits exist. In particular, we will be interested in the asymptotic cut-off functions
for the velocity operator v = {|z|/t}. Originally, such limits are defined for f € C§°
and then extended by continuity for more general f’s which include in particular the
characteristic functions, Fa, of intervals. In this way one can show that Ei(v) exist for
any interval whose boundary does not contain the point zero. The point now is that
the critical set of H(t) (see (2)) can be characterized, adequately for our purposes, by the
spectral projection Eﬁ)}(v). More precisely one shows that if ¢» € (Ran Eﬁ)}(v))J‘, then for
any ¢ > 0 there is ¥, s.t. || — ¢|| < e and PS(¢.) is a closed subset of the complement
of set (2) in the set of asymptotics of bicharacteristics of h,, for all w. Moreover, if
¥ € Ran E?B}(’U), then U(t)y is localized, in a rather strong sense in the ball {|z| < t*}
with @ > 2(2 + p)~'. This information is sufficient to prove asymptotic completeness of
the decay rate, p, of potentials greater than /3 — 1. Asymptotic observables were used
for the quantum mechanical scattering theory in V. Enss, 1983 and R. Lavine, 1971. The
characterization of the critical set in terms of asymptotic projections was introduced in
.M. Sigal and A. Soffer, 1989, 1993a for the observable of energy, i.e. H (in this case the
relevant asymptotic projection is associated with the threshold set of H) and implicitly
for A/t, where A is the dilation generator, and in J. Derezinski, 1993 for the velocity

observable x/t. A review of the results up to June 1991 can be found in A. Soffer, 1992.

Recent results. In some parts of the phase-space the notion of the propagation
set can be considerably sharpened as was shown in E. Skibstead, 1991 and Ch. Gérard,
1992. This leads to a sharper notion of the propagation set in the tree-body case. Ch.
Gérard and 1. Laba, 1993, 1994 have proven asymptotic completeness for quantum many-
particle systems placed in homogeneous magnetic fields whose potential decay at the rate
i > /3 — 1. Asymptotic completeness for particles interacting via hard core potentials

was proven by A. Iftimovici, 1993. The latter result is based on a generalization of the
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Mourre theory to rough systems due to W. Amrein, A.M. Boutet de Monvel and G.
Georgescu, 1988. Some of the ideas of the many-body scattering theory were used and
further developed in the existence problem for non-linear Schrodinger equation in A. Soffer,
1993, J. Ginibre, A. Soffer and G. Velo, 1992. For other results and more detailed discussion
see A. Soffer 1992 and also I.M. Sigal, 1991.
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